On the two-realizability of chain complexes
HTML articles powered by AMS MathViewer
- by Sushil Jajodia
- Proc. Amer. Math. Soc. 81 (1981), 125-128
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589153-0
- PDF | Request permission
Abstract:
We give a sufficient condition which insures the realizability of a two-dimensional chain complex satisfying Wallβs condition by a two-dimensional CW-complex.References
- Joan S. Birman, An inverse function theorem for free groups, Proc. Amer. Math. Soc. 41 (1973), 634β638. MR 330295, DOI 10.1090/S0002-9939-1973-0330295-8
- W. H. Cockcroft and R. M. F. Moss, On the two-dimensional realisability of chain complexes, J. London Math. Soc. (2) 11 (1975), no.Β 3, 257β262. MR 380811, DOI 10.1112/jlms/s2-11.3.257
- M. J. Dunwoody, Relation modules, Bull. London Math. Soc. 4 (1972), 151β155. MR 327915, DOI 10.1112/blms/4.2.151 M. N. Dyer, Spaces dominated by finite two-dimensional CW-complexes (to appear). W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure and Appl. Math., vol. 13, Interscience, New York, 1966.
- M. Susan Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539β540. MR 238967, DOI 10.1090/S0002-9904-1969-12234-2
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$ complexes. II, Proc. Roy. Soc. London Ser. A 295 (1966), 129β139. MR 211402, DOI 10.1098/rspa.1966.0230
- Roger C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), 650β665. MR 47046, DOI 10.2307/1969440
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 125-128
- MSC: Primary 57M20; Secondary 57M05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589153-0
- MathSciNet review: 589153