$\sigma$-coherent continua are hereditarily locally connected
HTML articles powered by AMS MathViewer
- by M. R. Hagan and W. S. Mahavier
- Proc. Amer. Math. Soc. 81 (1981), 129-132
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589154-2
- PDF | Request permission
Abstract:
A $\sigma$-coherent continuum is one in which every descending sequence of connected sets has a connected intersection. In this paper it is proved that such continua are hereditarily locally connnected. An example is given to show that the converse is not true.References
- K. M. Garg, Monotonicity of connected functions, Proc. First Conf. on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N.Y., 1970) State Univ. of New York at Binghamton, Binghamton, N.Y., 1971, pp. 351–359. MR 0279778
- Melvin R. Hagan, Continuity of certain connected functions and multifunctions, Proc. Amer. Math. Soc. 42 (1974), 295–301. MR 326652, DOI 10.1090/S0002-9939-1974-0326652-7
- Casimir Kuratowski, Topologie. Vol. II, Monografie Matematyczne, Tom 21, Państwowe Wydawnictwo Naukowe, Warsaw, 1961 (French). Troisième édition, corrigèe et complétée de deux appendices. MR 0133124
- Harlan C. Miller, On unicoherent continua, Trans. Amer. Math. Soc. 69 (1950), 179–194. MR 36498, DOI 10.1090/S0002-9947-1950-0036498-3
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 129-132
- MSC: Primary 54F20; Secondary 54F55
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589154-2
- MathSciNet review: 589154