A remark concerning multiplicities
HTML articles powered by AMS MathViewer
- by Craig Huneke
- Proc. Amer. Math. Soc. 85 (1982), 331-332
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656095-2
- PDF | Request permission
Abstract:
We prove that if a complete local ring $A$ containing a field satisfies Serre’s condition ${S_n}$ and the multiplicity of $A$ is at most $n$, then $A$ must be Cohen-Macaulay.References
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- E. Graham Evans and Phillip Griffith, The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. MR 632842, DOI 10.2307/1971296
- M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25–43. MR 349656
- Masayoshi Nagata, Local rings, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Corrected reprint. MR 0460307
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- Jean-Pierre Serre, Valeurs propres des endomorphismes de Frobenius (d’après P. Deligne), Séminaire Bourbaki, 26ème année (1973/1974), Lecture Notes in Math., Vol. 431, Springer, Berlin, 1975, pp. Exp. No. 446, pp. 190–204 (French). MR 0463177
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 331-332
- MSC: Primary 13H10; Secondary 13H15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656095-2
- MathSciNet review: 656095