## Recurrence relations for multivariate $B$-splines

HTML articles powered by AMS MathViewer

- by Carl de Boor and Klaus Höllig
- Proc. Amer. Math. Soc.
**85**(1982), 397-400 - DOI: https://doi.org/10.1090/S0002-9939-1982-0656111-8
- PDF | Request permission

## Abstract:

We prove recurrence relations for a general class of multivariate ${\text {B}}$-splines, obtained as ’projections’ of convex polyhedra. Our results are simple consequences of Stokes’ theorem and include, as special cases, the recurrence relations for the standard multivariate simplicial ${\text {B}}$-spline.## References

- C. de Boor,
- H. B. Curry and I. J. Schoenberg,
*On Pólya frequency functions. IV. The fundamental spline functions and their limits*, J. Analyse Math.**17**(1966), 71–107. MR**218800**, DOI 10.1007/BF02788653 - Wolfgang Dahmen,
*On multivariate $B$-splines*, SIAM J. Numer. Anal.**17**(1980), no. 2, 179–191. MR**567267**, DOI 10.1137/0717017
—, - Wolfgang Dahmen and Charles A. Micchelli,
*On limits of multivariate $B$-splines*, J. Analyse Math.**39**(1981), 256–278. MR**632464**, DOI 10.1007/BF02803338 - Wolfgang A. Dahmen and Charles A. Micchelli,
*Computation of inner products of multivariate $B$-splines*, Numer. Funct. Anal. Optim.**3**(1981), no. 3, 367–375. MR**629951**, DOI 10.1080/01630568108816095
—, - Paul Kergin,
*A natural interpolation of $C^{K}$ functions*, J. Approx. Theory**29**(1980), no. 4, 278–293. MR**598722**, DOI 10.1016/0021-9045(80)90116-1 - Charles A. Micchelli,
*A constructive approach to Kergin interpolation in $\textbf {R}^{k}$: multivariate $B$-splines and Lagrange interpolation*, Rocky Mountain J. Math.**10**(1980), no. 3, 485–497. MR**590212**, DOI 10.1216/RMJ-1980-10-3-485
—,

*Splines as linear combinations of*$B$

*-splines*, Approximation Theory II, G. G. Lorentz, C. K. Chui and L. L. Schumaker (eds.), Academic Press, New York, 1976, pp. 1-47. C. de Boor and R. DeVore,

*Approximation by smooth multivariate splines*, Math. Res. Center Tech. Summary Rep. 2319, Univ. of Wisconsin-Madison, 1981. C. de Boor and K. Höllig, $B$

*-splines from parallelepipeds*, Math. Res. Center Tech. Summary Rep. 2320, Univ. of Wisconsin-Madison, 1982. H. B. Curry and I. J. Schoenberg,

*On spline distributions and their limits: the Pólya distribution functions*, Bull. Amer. Math. Soc.

**53**(1947), 1114, Abstract 380t.

*Multivariate*$B$

*-splines—recurrence relations and linear combinations of truncated powers*, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, 64-82. —,

*Konstruktion mehrdimensionaler*$B$

*-splines und ihre Anwendungen auf Approximationsprobleme*, Numerische Methoden der Approximationstheorie, Bd. 5, L. Collatz, G. Meinardus and H. Werner (eds.), Birkhäuser, Basel, 1980, pp. 84-110. —,

*Approximation by smooth multivariate splines on non-uniform grids*, Quantitative Approximation, R. DeVore and K. Scherer (eds.), Academic Press, New York, 1980, pp. 99-114.

*On the linear independence of multivariate*$B$

*-splines*. I.

*Triangulations of simploids*, SIAM J. Numer. Anal. (to appear). T. N. T. Goodman and S. L. Lee,

*Spline approximation operators of Bernstein-Schoenberg type in one and two variables*, J. Approximation Theory (to appear). H. Hakopian,

*On multivariate*$B$

*-splines*, SIAM J. Numer. Anal. (to appear). K. Höllig,

*A remark on multivariate*$B$

*-splines*, J. Approximation Theory (to appear). —,

*Multivariate splines*, Math. Res. Center Tech. Summary Rep. 2188, Univ. of Wisconsin-Madison, 1981; SIAM J. Numer. Anal. (to appear). P. Kergin,

*Interpolation of*${C^K}$

*functions*, Thesis, University of Toronto, 1978.

*On a numerically efficient method for computing multivariate*$B$

*-splines*, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, pp. 211-248. I. J. Schoenberg, letter to Philip J. Davis dated May 31, 1965.

## Bibliographic Information

- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**85**(1982), 397-400 - MSC: Primary 41A15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656111-8
- MathSciNet review: 656111