Recurrence relations for multivariate $B$-splines
HTML articles powered by AMS MathViewer
- by Carl de Boor and Klaus Höllig
- Proc. Amer. Math. Soc. 85 (1982), 397-400
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656111-8
- PDF | Request permission
Abstract:
We prove recurrence relations for a general class of multivariate ${\text {B}}$-splines, obtained as ’projections’ of convex polyhedra. Our results are simple consequences of Stokes’ theorem and include, as special cases, the recurrence relations for the standard multivariate simplicial ${\text {B}}$-spline.References
- C. de Boor, Splines as linear combinations of $B$-splines, Approximation Theory II, G. G. Lorentz, C. K. Chui and L. L. Schumaker (eds.), Academic Press, New York, 1976, pp. 1-47.
C. de Boor and R. DeVore, Approximation by smooth multivariate splines, Math. Res. Center Tech. Summary Rep. 2319, Univ. of Wisconsin-Madison, 1981.
C. de Boor and K. Höllig, $B$-splines from parallelepipeds, Math. Res. Center Tech. Summary Rep. 2320, Univ. of Wisconsin-Madison, 1982.
H. B. Curry and I. J. Schoenberg, On spline distributions and their limits: the Pólya distribution functions, Bull. Amer. Math. Soc. 53 (1947), 1114, Abstract 380t.
- H. B. Curry and I. J. Schoenberg, On Pólya frequency functions. IV. The fundamental spline functions and their limits, J. Analyse Math. 17 (1966), 71–107. MR 218800, DOI 10.1007/BF02788653
- Wolfgang Dahmen, On multivariate $B$-splines, SIAM J. Numer. Anal. 17 (1980), no. 2, 179–191. MR 567267, DOI 10.1137/0717017 —, Multivariate $B$-splines—recurrence relations and linear combinations of truncated powers, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, 64-82. —, Konstruktion mehrdimensionaler $B$-splines und ihre Anwendungen auf Approximationsprobleme, Numerische Methoden der Approximationstheorie, Bd. 5, L. Collatz, G. Meinardus and H. Werner (eds.), Birkhäuser, Basel, 1980, pp. 84-110. —, Approximation by smooth multivariate splines on non-uniform grids, Quantitative Approximation, R. DeVore and K. Scherer (eds.), Academic Press, New York, 1980, pp. 99-114.
- Wolfgang Dahmen and Charles A. Micchelli, On limits of multivariate $B$-splines, J. Analyse Math. 39 (1981), 256–278. MR 632464, DOI 10.1007/BF02803338
- Wolfgang A. Dahmen and Charles A. Micchelli, Computation of inner products of multivariate $B$-splines, Numer. Funct. Anal. Optim. 3 (1981), no. 3, 367–375. MR 629951, DOI 10.1080/01630568108816095 —, On the linear independence of multivariate $B$-splines. I. Triangulations of simploids, SIAM J. Numer. Anal. (to appear). T. N. T. Goodman and S. L. Lee, Spline approximation operators of Bernstein-Schoenberg type in one and two variables, J. Approximation Theory (to appear). H. Hakopian, On multivariate $B$-splines, SIAM J. Numer. Anal. (to appear). K. Höllig, A remark on multivariate $B$-splines, J. Approximation Theory (to appear). —, Multivariate splines, Math. Res. Center Tech. Summary Rep. 2188, Univ. of Wisconsin-Madison, 1981; SIAM J. Numer. Anal. (to appear). P. Kergin, Interpolation of ${C^K}$ functions, Thesis, University of Toronto, 1978.
- Paul Kergin, A natural interpolation of $C^{K}$ functions, J. Approx. Theory 29 (1980), no. 4, 278–293. MR 598722, DOI 10.1016/0021-9045(80)90116-1
- Charles A. Micchelli, A constructive approach to Kergin interpolation in $\textbf {R}^{k}$: multivariate $B$-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), no. 3, 485–497. MR 590212, DOI 10.1216/RMJ-1980-10-3-485 —, On a numerically efficient method for computing multivariate $B$-splines, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, pp. 211-248. I. J. Schoenberg, letter to Philip J. Davis dated May 31, 1965.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 397-400
- MSC: Primary 41A15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656111-8
- MathSciNet review: 656111