Recurrence relations for multivariate $B$splines
HTML articles powered by AMS MathViewer
 by Carl de Boor and Klaus Höllig PDF
 Proc. Amer. Math. Soc. 85 (1982), 397400 Request permission
Abstract:
We prove recurrence relations for a general class of multivariate ${\text {B}}$splines, obtained as ’projections’ of convex polyhedra. Our results are simple consequences of Stokes’ theorem and include, as special cases, the recurrence relations for the standard multivariate simplicial ${\text {B}}$spline.References

C. de Boor, Splines as linear combinations of $B$splines, Approximation Theory II, G. G. Lorentz, C. K. Chui and L. L. Schumaker (eds.), Academic Press, New York, 1976, pp. 147.
C. de Boor and R. DeVore, Approximation by smooth multivariate splines, Math. Res. Center Tech. Summary Rep. 2319, Univ. of WisconsinMadison, 1981.
C. de Boor and K. Höllig, $B$splines from parallelepipeds, Math. Res. Center Tech. Summary Rep. 2320, Univ. of WisconsinMadison, 1982.
H. B. Curry and I. J. Schoenberg, On spline distributions and their limits: the Pólya distribution functions, Bull. Amer. Math. Soc. 53 (1947), 1114, Abstract 380t.
 H. B. Curry and I. J. Schoenberg, On Pólya frequency functions. IV. The fundamental spline functions and their limits, J. Analyse Math. 17 (1966), 71–107. MR 218800, DOI 10.1007/BF02788653
 Wolfgang Dahmen, On multivariate $B$splines, SIAM J. Numer. Anal. 17 (1980), no. 2, 179–191. MR 567267, DOI 10.1137/0717017 —, Multivariate $B$splines—recurrence relations and linear combinations of truncated powers, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, 6482. —, Konstruktion mehrdimensionaler $B$splines und ihre Anwendungen auf Approximationsprobleme, Numerische Methoden der Approximationstheorie, Bd. 5, L. Collatz, G. Meinardus and H. Werner (eds.), Birkhäuser, Basel, 1980, pp. 84110. —, Approximation by smooth multivariate splines on nonuniform grids, Quantitative Approximation, R. DeVore and K. Scherer (eds.), Academic Press, New York, 1980, pp. 99114.
 Wolfgang Dahmen and Charles A. Micchelli, On limits of multivariate $B$splines, J. Analyse Math. 39 (1981), 256–278. MR 632464, DOI 10.1007/BF02803338
 Wolfgang A. Dahmen and Charles A. Micchelli, Computation of inner products of multivariate $B$splines, Numer. Funct. Anal. Optim. 3 (1981), no. 3, 367–375. MR 629951, DOI 10.1080/01630568108816095 —, On the linear independence of multivariate $B$splines. I. Triangulations of simploids, SIAM J. Numer. Anal. (to appear). T. N. T. Goodman and S. L. Lee, Spline approximation operators of BernsteinSchoenberg type in one and two variables, J. Approximation Theory (to appear). H. Hakopian, On multivariate $B$splines, SIAM J. Numer. Anal. (to appear). K. Höllig, A remark on multivariate $B$splines, J. Approximation Theory (to appear). —, Multivariate splines, Math. Res. Center Tech. Summary Rep. 2188, Univ. of WisconsinMadison, 1981; SIAM J. Numer. Anal. (to appear). P. Kergin, Interpolation of ${C^K}$ functions, Thesis, University of Toronto, 1978.
 Paul Kergin, A natural interpolation of $C^{K}$ functions, J. Approx. Theory 29 (1980), no. 4, 278–293. MR 598722, DOI 10.1016/00219045(80)901161
 Charles A. Micchelli, A constructive approach to Kergin interpolation in $\textbf {R}^{k}$: multivariate $B$splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), no. 3, 485–497. MR 590212, DOI 10.1216/RMJ1980103485 —, On a numerically efficient method for computing multivariate $B$splines, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, pp. 211248. I. J. Schoenberg, letter to Philip J. Davis dated May 31, 1965.
Additional Information
 © Copyright 1982 American Mathematical Society
 Journal: Proc. Amer. Math. Soc. 85 (1982), 397400
 MSC: Primary 41A15
 DOI: https://doi.org/10.1090/S00029939198206561118
 MathSciNet review: 656111