Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Recurrence relations for multivariate $B$-splines
HTML articles powered by AMS MathViewer

by Carl de Boor and Klaus Höllig
Proc. Amer. Math. Soc. 85 (1982), 397-400
DOI: https://doi.org/10.1090/S0002-9939-1982-0656111-8

Abstract:

We prove recurrence relations for a general class of multivariate ${\text {B}}$-splines, obtained as ’projections’ of convex polyhedra. Our results are simple consequences of Stokes’ theorem and include, as special cases, the recurrence relations for the standard multivariate simplicial ${\text {B}}$-spline.
References
    C. de Boor, Splines as linear combinations of $B$-splines, Approximation Theory II, G. G. Lorentz, C. K. Chui and L. L. Schumaker (eds.), Academic Press, New York, 1976, pp. 1-47. C. de Boor and R. DeVore, Approximation by smooth multivariate splines, Math. Res. Center Tech. Summary Rep. 2319, Univ. of Wisconsin-Madison, 1981. C. de Boor and K. Höllig, $B$-splines from parallelepipeds, Math. Res. Center Tech. Summary Rep. 2320, Univ. of Wisconsin-Madison, 1982. H. B. Curry and I. J. Schoenberg, On spline distributions and their limits: the Pólya distribution functions, Bull. Amer. Math. Soc. 53 (1947), 1114, Abstract 380t.
  • H. B. Curry and I. J. Schoenberg, On Pólya frequency functions. IV. The fundamental spline functions and their limits, J. Analyse Math. 17 (1966), 71–107. MR 218800, DOI 10.1007/BF02788653
  • Wolfgang Dahmen, On multivariate $B$-splines, SIAM J. Numer. Anal. 17 (1980), no. 2, 179–191. MR 567267, DOI 10.1137/0717017
  • —, Multivariate $B$-splines—recurrence relations and linear combinations of truncated powers, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, 64-82. —, Konstruktion mehrdimensionaler $B$-splines und ihre Anwendungen auf Approximationsprobleme, Numerische Methoden der Approximationstheorie, Bd. 5, L. Collatz, G. Meinardus and H. Werner (eds.), Birkhäuser, Basel, 1980, pp. 84-110. —, Approximation by smooth multivariate splines on non-uniform grids, Quantitative Approximation, R. DeVore and K. Scherer (eds.), Academic Press, New York, 1980, pp. 99-114.
  • Wolfgang Dahmen and Charles A. Micchelli, On limits of multivariate $B$-splines, J. Analyse Math. 39 (1981), 256–278. MR 632464, DOI 10.1007/BF02803338
  • Wolfgang A. Dahmen and Charles A. Micchelli, Computation of inner products of multivariate $B$-splines, Numer. Funct. Anal. Optim. 3 (1981), no. 3, 367–375. MR 629951, DOI 10.1080/01630568108816095
  • —, On the linear independence of multivariate $B$-splines. I. Triangulations of simploids, SIAM J. Numer. Anal. (to appear). T. N. T. Goodman and S. L. Lee, Spline approximation operators of Bernstein-Schoenberg type in one and two variables, J. Approximation Theory (to appear). H. Hakopian, On multivariate $B$-splines, SIAM J. Numer. Anal. (to appear). K. Höllig, A remark on multivariate $B$-splines, J. Approximation Theory (to appear). —, Multivariate splines, Math. Res. Center Tech. Summary Rep. 2188, Univ. of Wisconsin-Madison, 1981; SIAM J. Numer. Anal. (to appear). P. Kergin, Interpolation of ${C^K}$ functions, Thesis, University of Toronto, 1978.
  • Paul Kergin, A natural interpolation of $C^{K}$ functions, J. Approx. Theory 29 (1980), no. 4, 278–293. MR 598722, DOI 10.1016/0021-9045(80)90116-1
  • Charles A. Micchelli, A constructive approach to Kergin interpolation in $\textbf {R}^{k}$: multivariate $B$-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), no. 3, 485–497. MR 590212, DOI 10.1216/RMJ-1980-10-3-485
  • —, On a numerically efficient method for computing multivariate $B$-splines, Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhäuser, Basel, 1979, pp. 211-248. I. J. Schoenberg, letter to Philip J. Davis dated May 31, 1965.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A15
  • Retrieve articles in all journals with MSC: 41A15
Bibliographic Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 85 (1982), 397-400
  • MSC: Primary 41A15
  • DOI: https://doi.org/10.1090/S0002-9939-1982-0656111-8
  • MathSciNet review: 656111