On fixed point theorems of contractive type

Authors:
Mau Hsiang Shih and Cheh Chih Yeh

Journal:
Proc. Amer. Math. Soc. **85** (1982), 465-468

MSC:
Primary 54H25

DOI:
https://doi.org/10.1090/S0002-9939-1982-0656125-8

MathSciNet review:
656125

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a continuous map of a nonempty compact metric space $(X,d)$ into itself, such that for some positive integer $m$, the iterated map ${G^m}$ satisfying \[ d({G^m}(x),{G^m}(y)) < \max \left \{ {d(x,y),d(x,{G^m}(x)),d(y,{G^m}(y)),d(x,{G^m}(y)),d(y,{G^m}(x))} \right \} \] for all $x$, $y \in X$ with $x \ne y$. It is shown that (i) $G$ has a unique fixed point ${x^ * } \in X$; (ii) the sequence of iterates $\left \{ {{G^k}(x)} \right \}$ converges to ${x^ * }$ for any $x \in X$; (iii) given $\lambda$, $0 < \lambda < 1$, there exists a metric ${d_\lambda }$, topologically equivalent to $d$, such that ${d_\lambda }(G(x)$, $G(y)) \leqslant \lambda {d_\lambda }(x,y)$ for all $x$, $y \in X$.

- Ming Po Ch’ên,
*Fixed point theorems for point-to-point and point-to-set maps*, J. Math. Anal. Appl.**71**(1979), no. 2, 516–524. MR**548780**, DOI https://doi.org/10.1016/0022-247X%2879%2990206-3 - Sherwood C. Chu and J. B. Diaz,
*Remarks on a generalization of Banach’s principle of contraction mappings*, J. Math. Anal. Appl.**11**(1965), 440–446. MR**184218**, DOI https://doi.org/10.1016/0022-247X%2865%2990096-X
Lj. B. Ćirić, - M. Edelstein,
*On fixed and periodic points under contractive mappings*, J. London Math. Soc.**37**(1962), 74–79. MR**133102**, DOI https://doi.org/10.1112/jlms/s1-37.1.74 - G. E. Hardy and T. D. Rogers,
*A generalization of a fixed point theorem of Reich*, Canad. Math. Bull.**16**(1973), 201–206. MR**324495**, DOI https://doi.org/10.4153/CMB-1973-036-0 - Ludvík Janoš,
*A converse of Banach’s contraction theorem*, Proc. Amer. Math. Soc.**18**(1967), 287–289. MR**208589**, DOI https://doi.org/10.1090/S0002-9939-1967-0208589-3 - A. N. Kolmogorov and S. V. Fomin,
*Elements of the theory of functions and functional analysis. Vol. 1. Metric and normed spaces*, Graylock Press, Rochester, N. Y., 1957. Translated from the first Russian edition by Leo F. Boron. MR**0085462** - Philip R. Meyers,
*A converse to Banach’s contraction theorem*, J. Res. Nat. Bur. Standards Sect. B**71B**(1967), 73–76. MR**221469**

*A generalization of Banach’s contraction principle*, Proc. Amer. Math. Soc.

**45**(1974), 267-273.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H25

Retrieve articles in all journals with MSC: 54H25

Additional Information

Keywords:
Contraction,
fixed point,
remetrization

Article copyright:
© Copyright 1982
American Mathematical Society