A generalization of the cohomology of groups
HTML articles powered by AMS MathViewer
- by Stefan Waner
- Proc. Amer. Math. Soc. 85 (1982), 469-474
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656126-X
- PDF | Request permission
Abstract:
Generalizations of the cohomology of finite groups, in which one considers varying families of subgroups, are presented. These groups are shown to relate to Bredon equivariant of homology of universal $G$-spaces, and to lead to necessary algebraic conditions for $G$-actions on contractible spaces.References
- A. Assadi, Thesis, Princeton Univ., Princeton, N. J., 1979.
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743 A. Elmendorf, Thesis, Univ. of Chicago, Chicago, Ill., 1979.
- J. A. Green, Axiomatic representation theory for finite groups, J. Pure Appl. Algebra 1 (1971), no. 1, 41–77. MR 279208, DOI 10.1016/0022-4049(71)90011-9
- Klaus Roggenkamp and Leonard Scott, Hecke actions on Picard groups, J. Pure Appl. Algebra 26 (1982), no. 1, 85–100. MR 669845, DOI 10.1016/0022-4049(82)90031-7 S. Waner, $G - {\text {CW}}(V)$ complexes, Preprint, Univ. of Virginia, Charlottesville, 1980.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 469-474
- MSC: Primary 18G10; Secondary 20J10, 55N25
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656126-X
- MathSciNet review: 656126