A note on preprojective partitions over hereditary Artin algebras
HTML articles powered by AMS MathViewer
- by Gordana Todorov
- Proc. Amer. Math. Soc. 85 (1982), 523-528
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660596-0
- PDF | Request permission
Abstract:
If $\Lambda$ is an artin algebra there is a partition of $\operatorname {ind} \Lambda$, the category of indecomposable finitely generated $\Lambda$-modules, $\operatorname {ind} \Lambda = { \cup _{i \geqslant 0}}{\underline {\underline {P}}_i}$, called the preprojective partition. We show that $\underline {\underline {P}}_i$ can be easily constructed for hereditary artin algebras, if $\underline {\underline {P}}_{i - 1}$ is known: $A$ is in $\underline {\underline {P}}_i$ if and only if $A$ is not in $\underline {\underline {P}}_{i - 1}$ and there is an irreducible map $B \to A$, where $B$ is in $\underline {\underline {P}}_{i - 1}$.References
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. IV. Invariants given by almost split sequences, Comm. Algebra 5 (1977), no. 5, 443–518. MR 439881, DOI 10.1080/00927877708822180
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- M. Auslander and S. O. Smalø, Preprojective modules: an introduction and some applications, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 48–73. MR 607148
- D. Zacharia, The preprojective partition for hereditary Artin algebras, Trans. Amer. Math. Soc. 274 (1982), no. 1, 327–343. MR 670936, DOI 10.1090/S0002-9947-1982-0670936-9
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 523-528
- MSC: Primary 16A35
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660596-0
- MathSciNet review: 660596