## On the oscillation and nonoscillation of second order sublinear equations

HTML articles powered by AMS MathViewer

- by Man Kam Kwong and James S. W. Wong PDF
- Proc. Amer. Math. Soc.
**85**(1982), 547-551 Request permission

## Abstract:

An oscillation criterion and a nonoscillation criterion are given for the sublinear equation $y'' + a(t)|y{|^\gamma }\operatorname {sgn} y = 0$, $0 < \gamma < 1,t \in [0,\infty )$, where $a(t)$ is allowed to change sign. When applied to the special case $a(t) = {t^\lambda }\sin t$, we deduce oscillation for $\lambda > - \gamma$ and nonoscillation for $\lambda < - \gamma$.## References

- G. J. Butler,
*Integral averages and the oscillation of second order ordinary differential equations*, SIAM J. Math. Anal.**11**(1980), no. 1, 190–200. MR**556509**, DOI 10.1137/0511017 - Man Kam Kwong and James S. W. Wong,
*On an oscillation theorem of Belohorec*, SIAM J. Math. Anal.**14**(1983), no. 3, 474–476. MR**697523**, DOI 10.1137/0514040 - James S. W. Wong,
*On the generalized Emden-Fowler equation*, SIAM Rev.**17**(1975), 339–360. MR**367368**, DOI 10.1137/1017036

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**85**(1982), 547-551 - MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660602-3
- MathSciNet review: 660602