The spaces which contain an $S$-space
HTML articles powered by AMS MathViewer
- by W. F. Pfeffer
- Proc. Amer. Math. Soc. 85 (1982), 659-660
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660624-2
- PDF | Request permission
Abstract:
Under the continuum hypothesis, we show that a ${T_1}$-space $X$ contains an $S$-space if and only if there is an uncountable locally countable set $E \subset X$ containing no Borel subset of $X$.References
- R. J. Gardner and W. F. Pfeffer, Are diffused, regular, Radon measures $\sigma$-finite?, J. London Math. Soc. (2) 20 (1979), no. 3, 485–494. MR 561140, DOI 10.1112/jlms/s2-20.3.485
- I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts, No. 34, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg. MR 0340021
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143–178. MR 270904, DOI 10.1016/0003-4843(70)90009-4
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 659-660
- MSC: Primary 54A25; Secondary 28A05, 54H05
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660624-2
- MathSciNet review: 660624