The octic periodic polynomial
Author:
Ronald J. Evans
Journal:
Proc. Amer. Math. Soc. 87 (1983), 389-393
MSC:
Primary 10G05
DOI:
https://doi.org/10.1090/S0002-9939-1983-0684624-2
MathSciNet review:
684624
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The coefficients and the discriminant of the octic period polynomial are computed, where, for a prime
,
denotes the minimal polynomial over
of the period
. Also, the finite set of prime octic nonresidues
which divide integers represented by
is characterized.
- [1] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), no. 3, S. Chowla Anniversary Issue, 349–398. MR 544263, https://doi.org/10.1016/0022-314X(79)90008-8
- [2] Bruce C. Berndt and Ronald J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 107–129. MR 621882, https://doi.org/10.1090/S0273-0979-1981-14930-2
- [3] Ronald J. Evans, Period polynomials for generalized cyclotomic periods, Manuscripta Math. 40 (1982), no. 2-3, 217–243. MR 683040, https://doi.org/10.1007/BF01174877
- [4] Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin-New York, 1975. Volume I: Contributions to number theory; Edited and with an introduction by André Weil. MR 0465760
- [5] D. H. Lehmer, The chromatic polynomial of a graph, Pacific J. Math. 118 (1985), no. 2, 463–469. MR 789185
- [6] Emma Lehmer, On the number of solutions of 𝑢^{𝑘}+𝐷≡𝑤²(\mod𝑝), Pacific J. Math. 5 (1955), 103–118. MR 67918
- [7] Emma Lehmer, Period equations applied to difference sets, Proc. Amer. Math. Soc. 6 (1955), 433–442. MR 68562, https://doi.org/10.1090/S0002-9939-1955-0068562-7
- [8] H. J. S. Smith, Report on the theory of numbers, Chelsea, New York.
- [9] J. J. Sylvester, Instantaneous Proof of a Theorem of Lagrange on the Divisors of the Form Ax² + By² + Cz², with a Postscript on the Divisors of the Functions which Multisect the Primitive Roots of Unity, Amer. J. Math. 3 (1880), no. 4, 390–392. MR 1505279, https://doi.org/10.2307/2369266
- [10] -, On the multisection of the roots of unity, Johns Hopkins University Circulars 1 (1881), 150-151; Mathematical papers, vol. 3, Chelsea, New York, 1973, pp. 477-478.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10G05
Retrieve articles in all journals with MSC: 10G05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1983-0684624-2
Keywords:
Octic period polynomial
Article copyright:
© Copyright 1983
American Mathematical Society