A gap Tauberian theorem for generalised absolute Abel summability
HTML articles powered by AMS MathViewer
- by K. Sarvothaman
- Proc. Amer. Math. Soc. 89 (1983), 651-656
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718991-8
- PDF | Request permission
Abstract:
A gap Tauberian theorem for generalised absolute Abel summability $\left | {{A_\alpha }} \right |$ is proved using Mel’nik’s theorem on convolution transforms.References
- D. Borwein and J. H. Rizvi, On Abel-type methods of summability, J. Reine Angew. Math. 247 (1971), 139–145. MR 276645, DOI 10.1017/S0305004100032357
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- V. K. Krishnan, Gap Tauberian theorem for generalized Abel summability, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 497–500. MR 399698, DOI 10.1017/S0305004100051975
- V. I. Mel′nik, A Tauberian theorem in the $L$ metric for convolution transformations, Ukrain. Mat. Zh. 32 (1980), no. 6, 831–836 (Russian). MR 598622
- A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204. MR 9966, DOI 10.1090/S0002-9947-1944-0009966-5
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 651-656
- MSC: Primary 40E05; Secondary 40F05, 40G10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718991-8
- MathSciNet review: 718991