Gel′fand-Kirillov dimension of rings of formal differential operators on affine varieties
HTML articles powered by AMS MathViewer
- by S. P. Smith
- Proc. Amer. Math. Soc. 90 (1984), 1-8
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722404-0
- PDF | Request permission
Abstract:
Let $A$ be the coordinate ring of a smooth affine algebraic variety defined over a field $k$. Let $D$ be the module of $k$-linear derivations on $A$ and form $A[D]$, the ring of differential operators on $A$, as follows: consider $A$ and $D$ as subspaces of ${\operatorname {End}_k}A$ ($A$ acting by left multiplication on itself), and define $A[D]$ to be the subalgebra generated by $A$ and $D$. Let $\operatorname {rk} D$ denote the torsion-free rank of $D$ (that is, $\operatorname {rk}D = {\dim _F}F{ \otimes _A}D$ where $F$ is the quotient field of $A$). The ring $A[D]$ is a finitely generated $k$-algebra so its Gelfand-Kirillov dimension ${\text {GK}}(A[D])$ may be defined. The following is proved. Theorem. ${\text {GK}}(A[D]) = {\text {tr de}}{{\text {g}}_k}A + \operatorname {rk} D = 2{\text { tr de}}{{\text {g}}_k}A$. Actually we work in a more general setting than that just described, and although a more general result is obtained, this is the most natural and important application of the main theorem.References
- Jan-Erik Björk, The global homological dimension of some algebras of differential operators, Invent. Math. 17 (1972), 67–78. MR 320078, DOI 10.1007/BF01390024
- J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
- K. R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974), 315–322. MR 382358, DOI 10.1090/S0002-9939-1974-0382358-X
- K. R. Goodearl, Global dimension of differential operator rings. II, Trans. Amer. Math. Soc. 209 (1975), 65–85. MR 382359, DOI 10.1090/S0002-9947-1975-0382359-7
- K. R. Goodearl, Global dimension of differential operator rings. III, J. London Math. Soc. (2) 17 (1978), no. 3, 397–409. MR 573057, DOI 10.1112/jlms/s2-17.3.397
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- G. Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408. MR 142598, DOI 10.1090/S0002-9947-1962-0142598-8
- Martin Lorenz, On the Gel′fand-Kirillov dimension of skew polynomial rings, J. Algebra 77 (1982), no. 1, 186–188. MR 665172, DOI 10.1016/0021-8693(82)90285-X
- George S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195–222. MR 154906, DOI 10.1090/S0002-9947-1963-0154906-3
- Pierre Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237–249 (French). MR 186702, DOI 10.24033/bsmf.1608
- Moss E. Sweedler, Groups of simple algebras, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 79–189. MR 364332, DOI 10.1007/BF02685882
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 1-8
- MSC: Primary 16A55; Secondary 14L99, 16A56, 16A72, 17B35, 17B40
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722404-0
- MathSciNet review: 722404