## Gel′fand-Kirillov dimension of rings of formal differential operators on affine varieties

HTML articles powered by AMS MathViewer

- by S. P. Smith PDF
- Proc. Amer. Math. Soc.
**90**(1984), 1-8 Request permission

## Abstract:

Let $A$ be the coordinate ring of a smooth affine algebraic variety defined over a field $k$. Let $D$ be the module of $k$-linear derivations on $A$ and form $A[D]$, the ring of differential operators on $A$, as follows: consider $A$ and $D$ as subspaces of ${\operatorname {End}_k}A$ ($A$ acting by left multiplication on itself), and define $A[D]$ to be the subalgebra generated by $A$ and $D$. Let $\operatorname {rk} D$ denote the torsion-free rank of $D$ (that is, $\operatorname {rk}D = {\dim _F}F{ \otimes _A}D$ where $F$ is the quotient field of $A$). The ring $A[D]$ is a finitely generated $k$-algebra so its Gelfand-Kirillov dimension ${\text {GK}}(A[D])$ may be defined. The following is proved. Theorem. ${\text {GK}}(A[D]) = {\text {tr de}}{{\text {g}}_k}A + \operatorname {rk} D = 2{\text { tr de}}{{\text {g}}_k}A$. Actually we work in a more general setting than that just described, and although a more general result is obtained, this is the most natural and important application of the main theorem.## References

- Jan-Erik Björk,
*The global homological dimension of some algebras of differential operators*, Invent. Math.**17**(1972), 67–78. MR**320078**, DOI 10.1007/BF01390024 - J.-E. Björk,
*Rings of differential operators*, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR**549189** - K. R. Goodearl,
*Global dimension of differential operator rings*, Proc. Amer. Math. Soc.**45**(1974), 315–322. MR**382358**, DOI 10.1090/S0002-9939-1974-0382358-X - K. R. Goodearl,
*Global dimension of differential operator rings. II*, Trans. Amer. Math. Soc.**209**(1975), 65–85. MR**382359**, DOI 10.1090/S0002-9947-1975-0382359-7 - K. R. Goodearl,
*Global dimension of differential operator rings. III*, J. London Math. Soc. (2)**17**(1978), no. 3, 397–409. MR**573057**, DOI 10.1112/jlms/s2-17.3.397 - A. Grothendieck,
*Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV*, Inst. Hautes Études Sci. Publ. Math.**32**(1967), 361 (French). MR**238860** - G. Hochschild, Bertram Kostant, and Alex Rosenberg,
*Differential forms on regular affine algebras*, Trans. Amer. Math. Soc.**102**(1962), 383–408. MR**142598**, DOI 10.1090/S0002-9947-1962-0142598-8 - Martin Lorenz,
*On the Gel′fand-Kirillov dimension of skew polynomial rings*, J. Algebra**77**(1982), no. 1, 186–188. MR**665172**, DOI 10.1016/0021-8693(82)90285-X - George S. Rinehart,
*Differential forms on general commutative algebras*, Trans. Amer. Math. Soc.**108**(1963), 195–222. MR**154906**, DOI 10.1090/S0002-9947-1963-0154906-3 - Pierre Samuel,
*Anneaux gradués factoriels et modules réflexifs*, Bull. Soc. Math. France**92**(1964), 237–249 (French). MR**186702**, DOI 10.24033/bsmf.1608 - Moss E. Sweedler,
*Groups of simple algebras*, Inst. Hautes Études Sci. Publ. Math.**44**(1974), 79–189. MR**364332**, DOI 10.1007/BF02685882

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**90**(1984), 1-8 - MSC: Primary 16A55; Secondary 14L99, 16A56, 16A72, 17B35, 17B40
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722404-0
- MathSciNet review: 722404