Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Banach spaces that have normal structure and are isomorphic to a Hilbert space


Authors: Javier Bernal and Francis Sullivan
Journal: Proc. Amer. Math. Soc. 90 (1984), 550-554
MSC: Primary 46B20; Secondary 46C05
DOI: https://doi.org/10.1090/S0002-9939-1984-0733404-9
MathSciNet review: 733404
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that given a Hilbert space $\left ( {E,|| \cdot ||} \right )$, and $| \cdot |$ a norm on $E$ such that for all $x \in E$, $1/\beta \left | x \right | \leqslant \left \| x \right \| \leqslant \left | x \right |$ for some $\beta$, if $1 \leqslant \beta < \sqrt 2$, then $\left ( {E,| \cdot |} \right )$ satisfies a convexity property from which normal structure follows.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 46C05

Retrieve articles in all journals with MSC: 46B20, 46C05


Additional Information

Article copyright: © Copyright 1984 American Mathematical Society