Banach spaces that have normal structure and are isomorphic to a Hilbert space
HTML articles powered by AMS MathViewer
- by Javier Bernal and Francis Sullivan
- Proc. Amer. Math. Soc. 90 (1984), 550-554
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733404-9
- PDF | Request permission
Abstract:
We prove that given a Hilbert space $\left ( {E,|| \cdot ||} \right )$, and $| \cdot |$ a norm on $E$ such that for all $x \in E$, $1/\beta \left | x \right | \leqslant \left \| x \right \| \leqslant \left | x \right |$ for some $\beta$, if $1 \leqslant \beta < \sqrt 2$, then $\left ( {E,| \cdot |} \right )$ satisfies a convexity property from which normal structure follows.References
- J.-B. Baillon and R. Schöneberg, Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), no. 2, 257–264. MR 593469, DOI 10.1090/S0002-9939-1981-0593469-1 J. Bernal, Behavior of $k$-dimensional convexity moduli, Thesis, Catholic University of America, Washington, D.C., 1980.
- Javier Bernal and Francis Sullivan, Multidimensional volumes, super-reflexivity and normal structure in Banach spaces, Illinois J. Math. 27 (1983), no. 3, 501–513. MR 698311
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- Francis Sullivan, A generalization of uniformly rotund Banach spaces, Canadian J. Math. 31 (1979), no. 3, 628–636. MR 536368, DOI 10.4153/CJM-1979-063-9
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 550-554
- MSC: Primary 46B20; Secondary 46C05
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733404-9
- MathSciNet review: 733404