Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type
Authors:
Hugo Aimar and Roberto A. Macías
Journal:
Proc. Amer. Math. Soc. 91 (1984), 213-216
MSC:
Primary 42B25
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740173-5
MathSciNet review:
740173
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The purpose of this note is to give an adequate Calderón-Zygmund type lemma in order to extend to the general setting of spaces of homogeneous type the weighted
boundedness for the Hardy-Littlewood maximal operator given by M. Christ and R. Fefferman.
- [1] Michael Christ and Robert Fefferman, A note on weighted norm inequalities for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 87 (1983), no. 3, 447–448. MR 684636, https://doi.org/10.1090/S0002-9939-1983-0684636-9
- [2] A.-P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), no. 3, 297–306. MR 442579, https://doi.org/10.4064/sm-57-3-297-306
- [3] R. Macías and C. Segovia, A well-behaved quasi-distance for spaces of homogeneous type, Trabajos de Matemática, Vol. 32, Inst. Argentino Mat., 1981, pp. 1-18.
- [4] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25
Retrieve articles in all journals with MSC: 42B25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740173-5
Keywords:
Maximal functions,
weights,
spaces of homogeneous type
Article copyright:
© Copyright 1984
American Mathematical Society