On boundedness of composition operators on
Authors:
Joseph A. Cima, Charles S. Stanton and Warren R. Wogen
Journal:
Proc. Amer. Math. Soc. 91 (1984), 217-222
MSC:
Primary 47B37; Secondary 32A35
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740174-7
MathSciNet review:
740174
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Composition operators on the Hardy space of the ball in
are studied. Some sufficient conditions are given for a composition operator to be bounded. A class of inner mappings is given which induces isometric composition operators. Another class of inner mappings is shown to induce unbounded composition operators.
- [1] Barbara D. MacCluer, Iterates of holomorphic self-maps of the unit ball in 𝐶^{𝑁}, Michigan Math. J. 30 (1983), no. 1, 97–106. MR 694933, https://doi.org/10.1307/mmj/1029002792
- [2]
-, Spectra of compact composition operators on
, preprint.
- [3] Eric A. Nordgren, Composition operators on Hilbert spaces, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 37–63. MR 526531
- [4] Walter Rudin, Function theory in the unit ball of 𝐶ⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- [5] Walter Rudin, Inner functions in the unit ball of 𝐶ⁿ, J. Functional Analysis 50 (1983), no. 1, 100–126. MR 690001, https://doi.org/10.1016/0022-1236(83)90062-9
- [6] R. K. Singh and S. D. Sharma, Composition operators and several complex variables, Bull. Austral. Math. Soc. 23 (1981), no. 2, 237–247. MR 617066, https://doi.org/10.1017/S0004972700007097
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37, 32A35
Retrieve articles in all journals with MSC: 47B37, 32A35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740174-7
Article copyright:
© Copyright 1984
American Mathematical Society