$G$-projective groups
Authors:
C. Vinsonhaler and W. Wickless
Journal:
Proc. Amer. Math. Soc. 92 (1984), 164-166
MSC:
Primary 20K15; Secondary 20K40
DOI:
https://doi.org/10.1090/S0002-9939-1984-0754694-2
MathSciNet review:
754694
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let TF be the category of torsion free abelian groups of finite rank and homomorphisms. For $G$ in TF let ${\text {PC}}\left ( G \right )$ be the projective class in TF generated by $\left \{ G \right \}$. Theorem. ${\text {PC}}\left ( G \right )$ consists exactly of groups of the form $P \oplus F$, where $F$ is finite rank free and $P$ is $G$-projective $P \oplus P’ \cong {G^n}$ for some positive integer $n$).
- D. M. Arnold and E. L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225–237. MR 417314, DOI https://doi.org/10.1090/S0002-9947-1975-0417314-1
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Roger H. Hunter, Balanced subgroups of abelian groups, Trans. Amer. Math. Soc. 215 (1976), 81–98. MR 507068, DOI https://doi.org/10.1090/S0002-9947-1976-0507068-3
- Fred Richman, Carol Walker, and Elbert A. Walker, Projective classes of Abelian groups, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 335–343. MR 0242928
- Luigi Salce, Cotorsion theories for abelian groups, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977) Academic Press, London-New York, 1979, pp. 11–32. MR 565595
- C. Vinsonhaler and W. Wickless, Projective classes of torsion free abelian groups, Acta Math. Acad. Sci. Hungar. 39 (1982), no. 1-3, 195–215. MR 653692, DOI https://doi.org/10.1007/BF01895233
- C. I. Vinsonhaler and W. J. Wickless, Projective and injective classes of completely decomposable groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 144–163. MR 722615, DOI https://doi.org/10.1007/BFb0103699 ---, Balanced projective and cobalanced injective torsion free groups of finite rank (to appear).
- R. B. Warfield Jr., Classification theory of abelian groups. I. Balanced projectives, Trans. Amer. Math. Soc. 222 (1976), 33–63. MR 422455, DOI https://doi.org/10.1090/S0002-9947-1976-0422455-X
- W. J. Wickless, Projective classes of torsion free abelian groups. II, Acta Math. Hungar. 44 (1984), no. 1-2, 13–20. MR 759032, DOI https://doi.org/10.1007/BF01974101
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K15, 20K40
Retrieve articles in all journals with MSC: 20K15, 20K40
Additional Information
Article copyright:
© Copyright 1984
American Mathematical Society