$m$-accretive operators with $m$-dispersive resolvents
HTML articles powered by AMS MathViewer
- by Ralph deLaubenfels
- Proc. Amer. Math. Soc. 92 (1984), 273-276
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754719-4
- PDF | Request permission
Abstract:
We characterize linear $m$-accretive operators with $m$-dispersive resolvents. $T$ is linear and $m$-accretive, with ${(\lambda + T)^{ - 1}}$ $m$-dispersive, if and only if the sequence $\left \langle {n!\phi {{(\lambda + T)}^{n + 1}}x} \right \rangle _{n = 0}^\infty$ equals the moments of a positive measure on the positive real line, for sufficiently many $\phi$ in ${X^*}$, $x$ in $X$.References
- Paul R. Chernoff, Quasi-analytic vectors and quasi-analytic functions, Bull. Amer. Math. Soc. 81 (1975), 637–646. MR 636276, DOI 10.1090/S0002-9904-1975-13806-7
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, American Mathematical Society, New York, 1943. MR 0008438, DOI 10.1090/surv/001
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 273-276
- MSC: Primary 47B44; Secondary 44A60
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754719-4
- MathSciNet review: 754719