Lie solvable rings
HTML articles powered by AMS MathViewer
- by R. K. Sharma and J. B. Srivastava
- Proc. Amer. Math. Soc. 94 (1985), 1-8
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781044-9
- PDF | Request permission
Abstract:
Let $\mathcal {L}(R)$ denote the associated Lie ring of an associative ring $R$ with identity $1 \ne 0$ under the Lie multiplication $[x,y] = xy - yx$ with $x,y \in R$. Further, suppose that the Lie ring $\mathcal {L}(R)$ is solvable of length $n$. It has been proved that if 3 is invertible in $R$, then the ideal $J$ of $R$ generated by all elements $[[[{x_1},{x_2}],[{x_3},{x_4}]],{x_5}],\;{x_1},\;{x_2},\;{x_3},\;{x_4},\;{x_5} \in R$, is nilpotent of index at most $\tfrac {2}{9}(19 \cdot {10^{n - 3}} - 1)$ for $n \geqslant 3$. Also, if 2 and 3 are both invertible in $R$, then the ideal $I$ of $R$ generated by all elements $[x,y],\;x,y \in R$, is a nil ideal of $R$. Some applications to Lie solvable group rings are also given.References
- S. A. Jennings, On rings whose associated Lie rings are nilpotent, Bull. Amer. Math. Soc. 53 (1947), 593–597. MR 20984, DOI 10.1090/S0002-9904-1947-08844-3
- I. B. S. Passi, D. S. Passman, and S. K. Sehgal, Lie solvable group rings, Canadian J. Math. 25 (1973), 748–757. MR 325746, DOI 10.4153/CJM-1973-076-4
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 1-8
- MSC: Primary 16A68
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781044-9
- MathSciNet review: 781044