Manifolds $M^ n$ of rank $n-1$
HTML articles powered by AMS MathViewer
- by D. Tischler
- Proc. Amer. Math. Soc. 94 (1985), 158-160
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781074-7
- PDF | Request permission
Abstract:
The determination of which closed orientable ${C^2}$ $n$-manifolds have rank $n - 1$ is completed.References
- G. Chatelet and H. Rosenberg, Manifolds which admit $\textbf {R}^{n}$ actions, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 245–260. MR 346808
- Gérard Joubert and Robert Moussu, Feuilletage sans holonomie d’une variété fermée, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A507–A509 (French). MR 258055
- S. P. Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965), 248–278 (Russian). MR 0200938
- Harold Rosenberg, Foliations by planes, Topology 7 (1968), 131–138. MR 228011, DOI 10.1016/0040-9383(68)90021-9
- David Ruelle and Dennis Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975), no. 4, 319–327. MR 415679, DOI 10.1016/0040-9383(75)90016-6
- Richard Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79–102. MR 174061, DOI 10.2307/2373226
- Dennis Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976), 225–255. MR 433464, DOI 10.1007/BF01390011
- David Tischler, Locally free actions of $R^{n-1}$ on $M^{n}$ without compact orbits, Topology 13 (1974), 215–217. MR 348769, DOI 10.1016/0040-9383(74)90013-5
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 158-160
- MSC: Primary 57R25; Secondary 57R30
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781074-7
- MathSciNet review: 781074