On the elliptic equation $D_ i[a_ {ij}(x)D_ jU]-k(x)U+K(x)U^ p=0$
HTML articles powered by AMS MathViewer
- by Fang-Hua Lin
- Proc. Amer. Math. Soc. 95 (1985), 219-226
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801327-3
- PDF | Request permission
Abstract:
The problem of the existence and nonexistence of entire, positive solutions to the uniformly elliptic, semilinear equation ${D_i}[{a_{ij}}(x){D_j}U] - k(x)U + K(x){U^p} = 0$ in ${{\mathbf {R}}^n}$, where $p > 1$, is studied. A limiting case when $K(x)$ is negative and has quadratic decay at infinity is also treated.References
- E. Fabes, D. Jerison, and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), no.Β 3, vi, 151β182 (English, with French summary). MR 688024, DOI 10.5802/aif.883
- Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no.Β 1, 77β116. MR 643158, DOI 10.1080/03605308208820218
- Carlos E. Kenig and Wei-Ming Ni, An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry, Amer. J. Math. 106 (1984), no.Β 3, 689β702. MR 745147, DOI 10.2307/2374291 β, Conformal metrics with prescribed curvatures, Abstracts Amer. Math. Soc. 4 (1983), 254.
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no.Β 4, 493β529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43β77. MR 161019 H. Brezis, Semi-linear equations in ${{\mathbf {R}}^n}$ without conditions at infinity, I.M.A. #48, Univ. of Minnesota, Minneapolis, Dec. 1983.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 219-226
- MSC: Primary 35J60; Secondary 35B05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801327-3
- MathSciNet review: 801327