SLLN and convergence rates for nearly orthogonal sequences of random variables
Author:
Ferenc Móricz
Journal:
Proc. Amer. Math. Soc. 95 (1985), 287-294
MSC:
Primary 60F15; Secondary 60G48
DOI:
https://doi.org/10.1090/S0002-9939-1985-0801340-6
MathSciNet review:
801340
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a sequence of random variables with finite second moments
for which
, where
is a sequence of nonnegative numbers with
. In particular, in the case of orthogonality,
for
. We prove strong laws for the first arithmetic means
and the Cesàro means







- [1] F. Móricz, Moment inequalities and the strong laws of large numbers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35 (1976), no. 4, 299–314. MR 0407950, https://doi.org/10.1007/BF00532956
- [2] Ferenc Móricz, On the Cesàro means of orthogonal sequences of random variables, Ann. Probab. 11 (1983), no. 3, 827–832. MR 704576
- [3] Pál Révész, The laws of large numbers, Probability and Mathematical Statistics, Vol. 4, Academic Press, New York-London, 1968. MR 0245079
- [4] K. Tandori, Bemerkungen zum Gesetz der großen Zahlen, Period. Math. Hungar. 2 (1972), 33–39 (German). Collection of articles dedicated to the memory of Alfréd Rényi, I. MR 0339325, https://doi.org/10.1007/BF02018649
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60F15, 60G48
Retrieve articles in all journals with MSC: 60F15, 60G48
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1985-0801340-6
Keywords:
Orthogonal and quasi-orthogonal random variables,
first arithmetic means,
Cesàro means,
strong laws of large numbers,
rates of convergence
Article copyright:
© Copyright 1985
American Mathematical Society