A nonlinear boundary problem
HTML articles powered by AMS MathViewer
- by John R. Hatcher
- Proc. Amer. Math. Soc. 95 (1985), 441-448
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806084-2
- PDF | Request permission
Abstract:
A nonlinear Hilbert problem of power type is solved in closed form by representing a sectionally holomorphic function by means of an integral with power kernel. This technique transforms the problem to one of solving an integral equation of the generalized Abel type.References
- K. D. Sakalyuk, Abel’s generalized integral equation, Soviet Math. Dokl. 1 (1960), 332–335. MR 0117520
- N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
- Norman Levinson, Simplified treatment of integrals of Cauchy type, the Hilbert problem and singular integral equations. Appendix: Poincaré-Bertrand formula, SIAM Rev. 7 (1965), 474–502. MR 185398, DOI 10.1137/1007105
- Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 441-448
- MSC: Primary 30E25; Secondary 45E10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806084-2
- MathSciNet review: 806084