Unimodular matrices in Banach algebra theory
HTML articles powered by AMS MathViewer
- by Gustavo Corach and Angel R. Larotonda
- Proc. Amer. Math. Soc. 96 (1986), 473-477
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822443-7
- PDF | Request permission
Abstract:
Let $A$ be a ring with 1 and denote by $L$ (resp. $R$) the set of left (resp. right) invertible elements of $A$. If $A$ has an involution *, there is a natural bijection between $L$ and $R$. In general, it seems that there is no such bijection; if $A$ is a Banach algebra, $L$ and $R$ are open subsets of $A$, and they have the same cardinality. More generally, we prove that the spaces ${U_k}({A^n})$ of $n \times k$-left-invertible matrices and $_kU({A^n})$ of $k \times n$-right-invertible matrices are homotopically equivalent. As a corollary, we answer negatively two questions of Rieffel [12].References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1333, Hermann, Paris, 1967 (French). MR 0219078
- Gustavo Corach and Angel R. Larotonda, A stabilization theorem for Banach algebras, J. Algebra 101 (1986), no. 2, 433–449. MR 847169, DOI 10.1016/0021-8693(86)90203-6
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI 10.1016/0040-9383(65)90067-4
- T. Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, Berlin-New York, 1978. MR 0485842 S. Lang, Differentiable manifolds, Addison-Wesley, Reading, Mass., 1972.
- V. Ja. Lin, Holomorphic fiberings and multivalued functions of elements of a Banach algebra, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 43–51 (Russian). MR 0318898
- M. E. Novodvorskiĭ, Certain homotopic invariants of the space of maximal ideals, Mat. Zametki 1 (1967), 487–494 (Russian). MR 209846
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Iain Raeburn, The relationship between a commutative Banach algebra and its maximal ideal space, J. Functional Analysis 25 (1977), no. 4, 366–390. MR 0458180, DOI 10.1016/0022-1236(77)90045-3
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Richard G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277. MR 143225, DOI 10.1090/S0002-9947-1962-0143225-6
- Joseph L. Taylor, Topological invariants of the maximal ideal space of a Banach algebra, Advances in Math. 19 (1976), no. 2, 149–206. MR 410384, DOI 10.1016/0001-8708(76)90061-X
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 473-477
- MSC: Primary 46H05; Secondary 46M20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822443-7
- MathSciNet review: 822443