Another counterexample in ANR theory
HTML articles powered by AMS MathViewer
- by Jan van Mill
- Proc. Amer. Math. Soc. 97 (1986), 136-138
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831402-X
- PDF | Request permission
Abstract:
We answer an old question due to Kuratowski by constructing a (separable metric) space $X$ having the following properties: (1) $X$ is not an ANR, and (2) for every space $Y$ and for every compact $A \subseteq Y$, every continuous map $f:A \to X$ can be continuously extended to a map $\bar f:Y \to X$.References
- Fredric D. Ancel, The role of countable dimensionality in the theory of cell-like relations, Trans. Amer. Math. Soc. 287 (1985), no. 1, 1–40. MR 766204, DOI 10.1090/S0002-9947-1985-0766204-X
- R. D. Anderson, D. W. Curtis, and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), no. 1, 311–321. MR 656491, DOI 10.1090/S0002-9947-1982-0656491-8
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- R. J. Daverman and J. J. Walsh, Examples of cell-like maps that are not shape equivalences, Michigan Math. J. 30 (1983), no. 1, 17–30. MR 694925, DOI 10.1307/mmj/1029002784
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- Victor Klee, Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281–285. MR 131149, DOI 10.1007/BF01360762
- Victor Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296. MR 131150, DOI 10.1007/BF01360763 G. Kozlowski, Images of ANR’s, unpublished manuscript.
- C. Kuratowski, Sur quelques problèmes topologiques concernant le prolongement des fonctions continues, Colloq. Math. 2 (1951), 186–191 (1952) (French). MR 48791, DOI 10.4064/cm-2-3-4-186-191
- Kazimierz Kuratowski and Andrzej Mostowski, Set theory, Second, completely revised edition, Studies in Logic and the Foundations of Mathematics, Vol. 86, North-Holland Publishing Co., Amsterdam-New York-Oxford; PWN—Polish Scientific Publishers, Warsaw, 1976. With an introduction to descriptive set theory; Translated from the 1966 Polish original. MR 0485384
- Jan van Mill, A counterexample in ANR theory, Topology Appl. 12 (1981), no. 3, 315–320. MR 623739, DOI 10.1016/0166-8641(81)90009-2
- Joseph L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629–632. MR 375328, DOI 10.1090/S0002-9904-1975-13768-2
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 136-138
- MSC: Primary 55M15; Secondary 54C20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831402-X
- MathSciNet review: 831402