The Borsuk-Ulam theorem for a $Z_ q$-map from a $Z_ q$-space to $S^ {2n+1}$
HTML articles powered by AMS MathViewer
- by Teiichi Kobayashi
- Proc. Amer. Math. Soc. 97 (1986), 714-716
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845994-8
- PDF | Request permission
Abstract:
J. W. Walker obtained in [2] a generalization of the Borsuk-Ulam theorem. The purpose of this note is to prove a $\mod q$ version of Walkerβs theorem.References
- N. E. Steenrod, Cohomology operations, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR 0145525
- James W. Walker, A homology version of the Borsuk-Ulam theorem, Amer. Math. Monthly 90 (1983), no.Β 7, 466β468. MR 711647, DOI 10.2307/2975728
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 714-716
- MSC: Primary 55M35
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845994-8
- MathSciNet review: 845994