Existence of a volume preserving diffeomorphism without periodic points on three-dimensional manifolds
HTML articles powered by AMS MathViewer
- by Nobuya Watanabe
- Proc. Amer. Math. Soc. 97 (1986), 724-726
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845996-1
- PDF | Request permission
Abstract:
In this paper we show that on a smooth oriented closed $3$-manifold there exists a volume preserving diffeomorphism without periodic points.References
- Ralph Abraham and Joel Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR 0240836
- M. L. Gromov, Convex integration of differential relations. I, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 329–343 (Russian). MR 0413206
- J. F. Plante, Diffeomorphisms without periodic points, Proc. Amer. Math. Soc. 88 (1983), no. 4, 716–718. MR 702306, DOI 10.1090/S0002-9939-1983-0702306-5
- R. Clark Robinson, Generic properties of conservative systems, Amer. J. Math. 92 (1970), 562–603. MR 273640, DOI 10.2307/2373361
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 724-726
- MSC: Primary 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845996-1
- MathSciNet review: 845996