Jensen’s inequality for positive contractions on operator algebras
HTML articles powered by AMS MathViewer
- by Dénes Petz
- Proc. Amer. Math. Soc. 99 (1987), 273-277
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870784-0
- PDF | Request permission
Abstract:
Let $\tau$ be a normal semifinite trace on a von Neumann algebra, and let $f$ be a continuous convex function on the interval $[0,\infty )$ with $f(0) = 0$. For a positive element $a$ of the algebra and a positive contraction $\alpha$ on the algebra, the following inequality is obtained: \[ \tau (f(\alpha (a))) \leq \tau (\alpha (f(a))).\]References
- T. Ando, Topics on operator inequalities, Hokkaido University, Research Institute of Applied Electricity, Division of Applied Mathematics, Sapporo, 1978. MR 0482378
- F. A. Berezin, Convex functions of operators, Mat. Sb. (N.S.) 88(130) (1972), 268–276 (Russian). MR 0300121
- Lawrence G. Brown and Hideki Kosaki, Jensen’s inequality in semi-finite von Neumann algebras, J. Operator Theory 23 (1990), no. 1, 3–19. MR 1054812 J. Dixmier, Les algèbres d’opérateurs dans l’espace Hilbertien (Algébres de von Neumann), 2nd ed., Gauthier-Villars, Paris, 1969.
- Thierry Fack, Sur la notion de valeur caractéristique, J. Operator Theory 7 (1982), no. 2, 307–333 (French). MR 658616
- Göran Lindblad, Expectations and entropy inequalities for finite quantum systems, Comm. Math. Phys. 39 (1974), 111–119. MR 363351
- Dénes Petz, A dual in von Neumann algebras with weights, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 140, 475–483. MR 767776, DOI 10.1093/qmath/35.4.475
- Dénes Petz, Spectral scale of selfadjoint operators and trace inequalities, J. Math. Anal. Appl. 109 (1985), no. 1, 74–82. MR 796042, DOI 10.1016/0022-247X(85)90176-3
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- Alfred Wehrl, General properties of entropy, Rev. Modern Phys. 50 (1978), no. 2, 221–260. MR 0496300, DOI 10.1103/RevModPhys.50.221
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 273-277
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870784-0
- MathSciNet review: 870784