Metrics of negative curvature on vector bundles
HTML articles powered by AMS MathViewer
- by Michael T. Anderson
- Proc. Amer. Math. Soc. 99 (1987), 357-363
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870801-8
- PDF | Request permission
Abstract:
It is shown that any vector bundle $E$ over a compact base manifold $M$ admits a complete metric of negative (respectively nonpositive) curvature provided $M$ admits a metric of negative (nonpositive) curvature.References
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4
- M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183–213. MR 624814 —, Infinite groups as geometric objects, Proc. I.C.M, Warsaw, 1983.
- Michael Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 40–53. MR 636516
- John C. Nash, Positive Ricci curvature on fibre bundles, J. Differential Geometry 14 (1979), no. 2, 241–254. MR 587552
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 357-363
- MSC: Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870801-8
- MathSciNet review: 870801