$\textrm {Pin}^ c$ cobordism and equivariant $\textrm {Spin}^ c$ cobordism of cyclic $2$-groups
HTML articles powered by AMS MathViewer
- by Anthony Bahri and Peter Gilkey
- Proc. Amer. Math. Soc. 99 (1987), 380-382
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870805-5
- PDF | Request permission
Abstract:
We compute the additive structure of $\Omega _ * ^{{\text {Pi}}{{\text {n}}^c}}$ and $\tilde \Omega _ * ^{{\text {Spi}}{{\text {n}}^c}}(B{Z_{{2^\upsilon }}})$ using the Anderson, Brown, and Peterson splitting of the spectrum $M{\text {Spi}}{{\text {n}}^c}$.References
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271–298. MR 219077, DOI 10.2307/1970690 A. P. Bahri and P. B. Gilkey, The eta invariant and equivalent Spin$^{c}$ bordism for cyclic 2 groups, Pacific J. Math. (to appear).
- Kensô Fujii, Teiichi Kobayashi, Katsumi Shimomura, and Masahiro Sugawara, $K\textrm {O}$-groups of lens spaces modulo powers of two, Hiroshima Math. J. 8 (1978), no. 3, 469–489. MR 515298
- Mahammed Norredine, $K$-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1363–A1365 (French). MR 287557
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 380-382
- MSC: Primary 57R85; Secondary 55N22, 57R90
- DOI: https://doi.org/10.1090/S0002-9939-1987-0870805-5
- MathSciNet review: 870805