Unbounded composition operators on $H^ 2(B_ 2)$
HTML articles powered by AMS MathViewer
- by J. A. Cima and W. R. Wogen
- Proc. Amer. Math. Soc. 99 (1987), 477-483
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875384-4
- PDF | Request permission
Abstract:
Examples are given of holomorphic self-maps of the unit ball on ${{\text {C}}^2}$ which induce unbounded composition operators on the Hardy space ${H^2}$. In particular, an example is given which is one-to-one on the closed ball. Also, a valence condition on the boundary of this ball is given which is sufficient for unboundedness of the induced composition operator.References
- Joseph A. Cima, Charles S. Stanton, and Warren R. Wogen, On boundedness of composition operators on $H^{2}(B_{2})$, Proc. Amer. Math. Soc. 91 (1984), no. 2, 217–222. MR 740174, DOI 10.1090/S0002-9939-1984-0740174-7
- Barbara D. MacCluer, Spectra of compact composition operators on $H^p(B_N)$, Analysis 4 (1984), no. 1-2, 87–103. MR 775548, DOI 10.1524/anly.1984.4.12.87
- Barbara D. MacCluer, Compact composition operators on $H^p(B_N)$, Michigan Math. J. 32 (1985), no. 2, 237–248. MR 783578, DOI 10.1307/mmj/1029003191
- Barbara D. MacCluer and Joel H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), no. 4, 878–906. MR 854144, DOI 10.4153/CJM-1986-043-4
- Eric A. Nordgren, Composition operators on Hilbert spaces, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 37–63. MR 526531
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 99 (1987), 477-483
- MSC: Primary 32A35; Secondary 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1987-0875384-4
- MathSciNet review: 875384