The noncompact hyperbolic $3$-manifold of minimal volume
HTML articles powered by AMS MathViewer
- by Colin C. Adams PDF
- Proc. Amer. Math. Soc. 100 (1987), 601-606 Request permission
Abstract:
We utilize maximal cusp volumes in order to prove that the Gieseking manifold is the unique complete noncompact hyperbolic $3$-manifold of minimal hyperbolic volume.References
-
C. Adams, Volumes of $N$-cusp hyperbolic $3$-manifolds, preprint.
C. Adams, M. Hildebrand and J. Weeks, Hyperbolic invariants of knot and link complements (in preparation).
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- K. Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978), no. 3-4, 243–261. MR 512399, DOI 10.1007/BF01902361 H. Gieseking, Analytische Untersuchungen über Topologische Gruppen, Thesis, Muenster, 1912.
- Robert Meyerhoff, Sphere-packing and volume in hyperbolic $3$-space, Comment. Math. Helv. 61 (1986), no. 2, 271–278. MR 856090, DOI 10.1007/BF02621915
- Robert Meyerhoff, The cusped hyperbolic $3$-orbifold of minimum volume, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 154–156. MR 799800, DOI 10.1090/S0273-0979-1985-15401-1 —, A lower bound for the volume of hyperbolic $3$-manifolds, Canad J. Math. (to appear).
- John Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 9–24. MR 634431, DOI 10.1090/S0273-0979-1982-14958-8 W. Thurston, The geometry and topology of $3$-manifolds, class notes, Princeton University, 1978.
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 601-606
- MSC: Primary 57N10; Secondary 20H10, 57M10, 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1987-0894423-8
- MathSciNet review: 894423