Strong convergence of resolvents of monotone operators in Banach spaces
HTML articles powered by AMS MathViewer
- by Kazuo Kido
- Proc. Amer. Math. Soc. 103 (1988), 755-758
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947652-X
- PDF | Request permission
Abstract:
Let ${E^*}$ be a real strictly convex dual Banach space with a Fréchet differentiable norm, and $A$ a maximal monotone operator from $E$ into ${E^*}$ such that ${A^{ - 1}}0 \ne \emptyset$. Fix $x \in E$. Then ${J_\lambda }x$ converges strongly to $Px$ as $\lambda \to \infty$, where ${J_\lambda }$ is the resolvent of $A$, and $P$ is the nearest point mapping from $E$ onto ${A^{ - 1}}0$.References
- V. Barbu and Th. Precupanu, Convexitate şi optimizare în spaţii Banach, Editura Academiei Republicii Socialiste România, Bucharest, 1975 (Romanian). With an English summary and table of contents; Analiză Modernă şi Aplicaţii. [Modern Analysis and Applications]. MR 0461071
- E. K. Blum, Numerical analysis and computation theory and practice, Addison-Wesley Series in Mathematics, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972. MR 0408185
- Haïm Brezis and Moïse Sibony, Méthodes d’approximation et d’itération pour les opérateurs monotones, Arch. Rational Mech. Anal. 28 (1967/1968), 59–82 (French). MR 0220110, DOI 10.1007/BF00281564
- Felix E. Browder, Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1080–1086. MR 203534, DOI 10.1073/pnas.56.4.1080
- Ronald E. Bruck Jr., Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc. 76 (1970), 384–386. MR 256135, DOI 10.1090/S0002-9904-1970-12486-7
- Ronald E. Bruck Jr., A strongly convergent iterative solution of $0\in U(x)$ for a maximal monotone operator $U$ in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114–126. MR 361941, DOI 10.1016/0022-247X(74)90219-4
- F. R. Deutsch and P. H. Maserick, Applications of the Hahn-Banach theorem in approximation theory, SIAM Rev. 9 (1967), 516–530. MR 216224, DOI 10.1137/1009072
- Kazimierz Goebel and Simeon Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, Inc., New York, 1984. MR 744194
- Simeon Reich, Constructive techniques for accretive and monotone operators, Applied nonlinear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978) Academic Press, New York-London, 1979, pp. 335–345. MR 537545
- Simeon Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287–292. MR 576291, DOI 10.1016/0022-247X(80)90323-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 755-758
- MSC: Primary 47H05; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947652-X
- MathSciNet review: 947652