The asymptotics of the determinant function for a class of operators
Author:
Leonid Friedlander
Journal:
Proc. Amer. Math. Soc. 107 (1989), 169-178
MSC:
Primary 58G15; Secondary 47B25, 47B38, 47G05
DOI:
https://doi.org/10.1090/S0002-9939-1989-0975642-0
MathSciNet review:
975642
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an elliptic pseudodifferential operator on a closed manifold
and
. We derive the asymptotics of
when
. The constant term of this asymptotics equals
.
- [1] R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR 0237943
- [2] Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, vol. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463
- [3] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by Stig I. Andersson. MR 883081
- [4] N. N. Vakhania, Probability distributions on linear spaces, North-Holland Publishing Co., New York-Amsterdam, 1981. Translated from the Russian by I. I. Kotlarski; North-Holland Series in Probability and Applied Mathematics. MR 626346
- [5] M. S. Agranovich, Some asymptotic formulas for elliptic pseudodifferential operators, Funktsional. Anal. i Prilozhen. 21 (1987), no. 1, 63–65 (Russian). MR 888015
- [6] H. Bateman and A. Erdelyi, Higher transcendental functions, Vol. 1, McGraw-Hill Comp. Inc., New York-Toronto-London, 1953.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G15, 47B25, 47B38, 47G05
Retrieve articles in all journals with MSC: 58G15, 47B25, 47B38, 47G05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0975642-0
Article copyright:
© Copyright 1989
American Mathematical Society