On a theorem of Feit and Tits
HTML articles powered by AMS MathViewer
- by Peter B. Kleidman and Martin W. Liebeck
- Proc. Amer. Math. Soc. 107 (1989), 315-322
- DOI: https://doi.org/10.1090/S0002-9939-1989-0961412-6
- PDF | Request permission
Abstract:
Feit and Tits [3] lay the groundwork for determining the smallest degree of a projective representation of a finite extension of a finite simple group $G$. Provided $G$ is not of Lie type in characteristic 2, they determine precisely when this degree is smaller than the degree of a projective representation of $G$ itself. We complete this project by extending their results to the groups of Lie type in characteristic 2.References
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Hikoe Enomoto and Hiromichi Yamada, The characters of $G_2(2^n)$, Japan. J. Math. (N.S.) 12 (1986), no. 2, 325–377. MR 914301, DOI 10.4099/math1924.12.325
- Walter Feit and Jacques Tits, Projective representations of minimum degree of group extensions, Canadian J. Math. 30 (1978), no. 5, 1092–1102. MR 498824, DOI 10.4153/CJM-1978-092-5
- J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447. MR 72878, DOI 10.1090/S0002-9947-1955-0072878-2
- Robert L. Griess Jr., Automorphisms of extra special groups and nonvanishing degree $2$ cohomology, Pacific J. Math. 48 (1973), 403–422. MR 476878
- Gerhard Hiss, On the decomposition numbers of $G_2(q)$, J. Algebra 120 (1989), no. 2, 339–360. MR 989902, DOI 10.1016/0021-8693(89)90201-9 G. Hiss and J. Shamash, The $3$-modular representations of ${G_2}({2^n})$ (to appear).
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423 G. D. James, The decomposition matrices for ${\text {G}}{{\text {L}}_n}(q),n \leq 10$, Imperial College, London, (preprint).
- Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418–443. MR 360852, DOI 10.1016/0021-8693(74)90150-1
- Martin W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3) 50 (1985), no. 3, 426–446. MR 779398, DOI 10.1112/plms/s3-50.3.426
- Martin W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3) 54 (1987), no. 3, 477–516. MR 879395, DOI 10.1112/plms/s3-54.3.477
- Gary M. Seitz, Some representations of classical groups, J. London Math. Soc. (2) 10 (1975), 115–120. MR 369556, DOI 10.1112/jlms/s2-10.1.115
- Josephine Shamash, Blocks and Brauer trees for groups of type $G_2(q)$, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 283–295. MR 933418, DOI 10.1090/pspum/047.2/933418
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284 (German). MR 1546236, DOI 10.1007/BF01692444
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 315-322
- MSC: Primary 20C25
- DOI: https://doi.org/10.1090/S0002-9939-1989-0961412-6
- MathSciNet review: 961412