## Periodic point free homeomorphism of $T^ 2$

HTML articles powered by AMS MathViewer

- by Michael Handel PDF
- Proc. Amer. Math. Soc.
**107**(1989), 511-515 Request permission

## Abstract:

Suppose that $f:{T^2} \to {T^2}$ is an orientation preserving homeomorphism of the torus that is homotopic to the identity and that has no periodic points. We show that there is a direction $\theta$ and a number $\rho$ such that every orbit of $f$ has rotation number $\rho$ in the direction $\theta$.## References

- John Franks,
*Recurrence and fixed points of surface homeomorphisms*, Ergodic Theory Dynam. Systems**8$^*$**(1988), no.Â Charles Conley Memorial Issue, 99â€“107. MR**967632**, DOI 10.1017/S0143385700009366
Handel, M., - Michael-R. Herman,
*Une mĂ©thode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractĂ¨re local dâ€™un thĂ©orĂ¨me dâ€™Arnolâ€˛d et de Moser sur le tore de dimension $2$*, Comment. Math. Helv.**58**(1983), no.Â 3, 453â€“502 (French). MR**727713**, DOI 10.1007/BF02564647

*Zero entropy surface diffeomorphisms*, preprint.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**107**(1989), 511-515 - MSC: Primary 58F99; Secondary 57S17, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-1989-0965243-2
- MathSciNet review: 965243