On dual spaces with bounded sequences without weak-convergent convex blocks
Author:
Thomas Schlumprecht
Journal:
Proc. Amer. Math. Soc. 107 (1989), 395-408
MSC:
Primary 46B20
DOI:
https://doi.org/10.1090/S0002-9939-1989-0979052-1
MathSciNet review:
979052
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this work we show that if contains bounded sequences without weak* convergent convex blocks, then it contains an isometric copy of
.
- [ABZ]
S. A. Argyros, J. Bourgain and T. Zachariades, A result on the isomorphic embeddability of
, Stud. Math. 78 (1984), 77-92.
- [B] J. Bourgain, La propiété de Radon-Nikodym, Publication des Math. de'l Université Pierre et Marie Currie, 36 (1979).
- [BD] Jean Bourgain and Joe Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58. MR 774176, https://doi.org/10.1002/mana.19841190105
- [DE] L. Drewnowski and G. Emmanuele, On Banach spaces with the Gel′fand-Phillips property. II, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391 (1990). MR 1053378, https://doi.org/10.1007/BF02850021
- [F] D. Fremlin, Consequences of Martin's axiom, Cambridge University Press, 1985.
- [HJ] J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), no. 4, 325–330. MR 482086, https://doi.org/10.1007/BF02760638
- [Hy] Richard Haydon, An unconditional result about Grothendieck spaces, Proc. Amer. Math. Soc. 100 (1987), no. 3, 511–516. MR 891155, https://doi.org/10.1090/S0002-9939-1987-0891155-7
- [HLO] Richard Haydon, Mireille Levy, and Edward Odell, On sequences without weak* convergent convex block subsequences, Proc. Amer. Math. Soc. 100 (1987), no. 1, 94–98. MR 883407, https://doi.org/10.1090/S0002-9939-1987-0883407-1
- [O] E. Odell, Applications of Ramsey theorems to Banach space theory, Notes in Banach spaces, Univ. Texas Press, Austin, Tex., 1980, pp. 379–404. MR 606226
- [P] A. Pełczyński, On Banach spaces containing 𝐿₁(𝜇), Studia Math. 30 (1968), 231–246. MR 232195, https://doi.org/10.4064/sm-30-2-231-246
- [R] H. P. Rosenthal, On the structure of weak*-compact subsets of a dual Banach space, in preparation.
- [S] Th. Schlumprecht, Limited sets in Banach spaces, Dissertation, München, 1987.
- [T] Michel Talagrand, Un nouveau \cal𝐶(𝐾) qui possède la propriété de Grothendieck, Israel J. Math. 37 (1980), no. 1-2, 181–191 (French, with English summary). MR 599313, https://doi.org/10.1007/BF02762879
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20
Retrieve articles in all journals with MSC: 46B20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0979052-1
Article copyright:
© Copyright 1989
American Mathematical Society