Ideal theoretic complete intersections in $\textbf {P}^ 3_ K$
HTML articles powered by AMS MathViewer
- by Apostolos Thoma
- Proc. Amer. Math. Soc. 107 (1989), 341-345
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984817-6
- PDF | Request permission
Abstract:
We describe the monomial curves in $P_K^3$ ($K$ algebraically closed field of characteristic zero) that are set theoretical complete intersections on two binomial surfaces. We prove that they are exactly those which are ideal theoretic complete intersections. Using that, we get explicitly all monomial curves that are ideal theoretic complete intersections and a minimal generating basis for their ideals.References
- Henrik Bresinsky and Bodo Renschuch, Basisbestimmung Veronesescher Projektionsideale mit allgemeiner Nullstelle $(t^{m}_{0},\,t_{0}^{m-r}t^{r}_{1},$ $t_{0}^{m-s}t^{s}_{1},\,t^{m}_{1})$, Math. Nachr. 96 (1980), 257โ269 (German). MR 600813, DOI 10.1002/mana.19800960120
- Henrik Bresinsky, Peter Schenzel, and Wolfgang Vogel, On liaison, arithmetical Buchsbaum curves and monomial curves in $\textbf {P}^{3}$, J. Algebra 86 (1984), no.ย 2, 283โ301. MR 732252, DOI 10.1016/0021-8693(84)90034-6
- T. T. Moh, Set-theoretic complete intersections, Proc. Amer. Math. Soc. 94 (1985), no.ย 2, 217โ220. MR 784166, DOI 10.1090/S0002-9939-1985-0784166-1
- Apostolos Thoma, Monomial space curves in $\textbf {P}^3_k$ as binomial set theoretic complete intersections, Proc. Amer. Math. Soc. 107 (1989), no.ย 1, 55โ61. MR 976361, DOI 10.1090/S0002-9939-1989-0976361-7
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 341-345
- MSC: Primary 14M10
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984817-6
- MathSciNet review: 984817