Minimal surfaces with low index in the three-dimensional sphere
HTML articles powered by AMS MathViewer
- by Francisco Urbano PDF
- Proc. Amer. Math. Soc. 108 (1990), 989-992 Request permission
Abstract:
In the present paper, the author gives a characterization of the Clifford torus among the minimal surfaces of the three-dimensional sphere in terms of its index.References
- F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277–292. MR 200816, DOI 10.2307/1970520
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 59–75. MR 0273546
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI 10.1007/BF01394782
- Peter Li and Shing Tung Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269–291. MR 674407, DOI 10.1007/BF01399507
- Francisco J. López and Antonio Ros, Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989), no. 1, 34–43. MR 982560, DOI 10.1007/BF02564662
- Sebastián Montiel and Antonio Ros, Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math. 83 (1986), no. 1, 153–166. MR 813585, DOI 10.1007/BF01388756
- Morio Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. MR 142086, DOI 10.2969/jmsj/01430333
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 989-992
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007516-1
- MathSciNet review: 1007516