## Spin characteristic classes and reduced $K\textrm {Spin}$ group of a low-dimensional complex

HTML articles powered by AMS MathViewer

- by Bang He Li and Hai Bao Duan PDF
- Proc. Amer. Math. Soc.
**113**(1991), 479-491 Request permission

## Abstract:

This note studies relations between Spin bundles, over a*CW*-complex of dimension $\leq 9$, and their first two Spin characteristic classes. In particular by taking Spin characteristic classes, it is proved that the stable classes of Spin bundles over a manifold $M$ with dimension $\leq 8$ are in one to one correspondence with the pairs of cohomology classes $({q_1},{q_2}) \in {H^4}(M;\mathbb {Z}) \times {H^8}(M;\mathbb {Z})$ satisfying \[ ({q_1} \cup {q_2} + {q_2})\bmod 3 + U_3^1 \cup ({q_1}\bmod 3) \equiv 0\], where $U_3^1 \in {H^4}(M;{\mathbb {Z}_3})$ is the indicated Wu-class of $M$. As an application a computation is made for $\widetilde {K\operatorname {Spin} }(M)$, where $M$ is an eight-dimensional manifold with understood cohomology rings over $\mathbb {Z},{\mathbb {Z}_2},$, and ${\mathbb {Z}_3}$.

## References

- Emery Thomas,
*On the cohomology groups of the classifying space for the stable spinor groups*, Bol. Soc. Mat. Mexicana (2)**7**(1962), 57–69. MR**153027** - John W. Milnor and James D. Stasheff,
*Characteristic classes*, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR**0440554**, DOI 10.1515/9781400881826 - Robert M. Switzer,
*Algebraic topology—homotopy and homology*, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Reprint of the 1975 original [Springer, New York; MR0385836 (52 #6695)]. MR**1886843** - Michel A. Kervaire,
*A note on obstructions and characteristic classes*, Amer. J. Math.**81**(1959), 773–784. MR**107863**, DOI 10.2307/2372928 - J. F. Adams,
*On the groups $J(X)$. IV*, Topology**5**(1966), 21–71. MR**198470**, DOI 10.1016/0040-9383(66)90004-8

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**113**(1991), 479-491 - MSC: Primary 55R50; Secondary 57R20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1079895-1
- MathSciNet review: 1079895