Fixed point iteration for local strictly pseudo-contractive mapping
Author:
Xinlong Weng
Journal:
Proc. Amer. Math. Soc. 113 (1991), 727-731
MSC:
Primary 47H10; Secondary 47H09
DOI:
https://doi.org/10.1090/S0002-9939-1991-1086345-8
MathSciNet review:
1086345
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A fixed point of the local strictly pseudo-contractive mapping is obtained as the limit of an iteratively constructed sequence with an error estimation in uniformly smooth Banach spaces.
- [1] Ya. I. Al'ber and A. I. Notik, Geometric properties of Banach spaces and approximate methods for solving nonlinear operator equations, Soviet Math. Dokl. 29 (1984), 611-615.
- [2] C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 99 (1987), no. 2, 283–288. MR 870786, https://doi.org/10.1090/S0002-9939-1987-0870786-4
- [3] Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 0226230, https://doi.org/10.2969/jmsj/01940508
- [4] Simeon Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Anal. 2 (1978), no. 1, 85–92. MR 512657, https://doi.org/10.1016/0362-546X(78)90044-5
- [5] -, Constructive techniques for accretive and monotone operators, Appl. Nonlinear Anal. Arlington, TX, 1979.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 47H09
Retrieve articles in all journals with MSC: 47H10, 47H09
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1991-1086345-8
Keywords:
Local strictly pseudo-contractive mapping,
iterative method
Article copyright:
© Copyright 1991
American Mathematical Society