The nonlocal nature of the summability of Fourier series by certain absolute Riesz methods
HTML articles powered by AMS MathViewer
- by David Borwein
- Proc. Amer. Math. Soc. 114 (1992), 89-94
- DOI: https://doi.org/10.1090/S0002-9939-1992-1062383-7
- PDF | Request permission
Abstract:
It is proved that for a large class of sequences $\{ {{\lambda _n}} \}$ the summability at a point of a Fourier series $\Sigma A_n ( t )$ by the absolute Riesz method $| {R,{\lambda _n},1} |$ is not a local property of the generating function. It is also proved, inter alia, that, for every $\varepsilon > 0$, the $| {R,{\lambda _n},1} |$ summability of the factored series $\Sigma A_n ( t )\lambda _n^{ - \varepsilon }$ at any point is always a local property of the generating function.References
- Shri Nivas Bhatt, An aspect of local property of $| R,\,\textrm {log}\,n, 1|$ summability of the factored Fourier series, Proc. Nat. Inst. Sci. India Part A 26 (1960), 69β73. MR 158218
- HΓΌseyin Bor, Local property of $|\overline N,p_n|_k$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 17 (1989), no.Β 2, 165β170. MR 1042427 L. S. Bosanquet and H. Kestleman, The absolute convergence of series of integrals, Proc. London Math. Soc. (2) 45 (1939), 88-97.
- G. D. Dikshit, On the absolute Riesz summability factors of infinite series. I, Indian J. Math. 1 (1958), no.Β 1, 33β40 (1958). MR 104945
- Kishi Matsumoto, Local property of the summability $|R,\lambda _n,1|$, Tohoku Math. J. (2) 8 (1956), 114β124. MR 80200, DOI 10.2748/tmj/1178245014
- K. N. Mishra, Multipliers for $|\overline N,p_n|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica 14 (1986), no.Β 4, 431β438. MR 885371
- R. Mohanty, On the summability $| R,\textrm {log}, w,1|$ of a Fourier series, J. London Math. Soc. 25 (1950), 67β72. MR 34466, DOI 10.1112/jlms/s1-25.1.67
- R. Mohanty, On the absolute Riesz summability of Fourier series and allied series, Proc. London Math. Soc. (2) 52 (1951), 295β320. MR 41266, DOI 10.1112/plms/s2-52.4.295
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 89-94
- MSC: Primary 42A28
- DOI: https://doi.org/10.1090/S0002-9939-1992-1062383-7
- MathSciNet review: 1062383