$h_ 0$-torsion bounds in the cohomology of the Steenrod algebra
HTML articles powered by AMS MathViewer
- by Kenneth G. Monks
- Proc. Amer. Math. Soc. 114 (1992), 5-9
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070527-6
- PDF | Request permission
Abstract:
In this paper we use a technique of M. Hopkins to prove that the cohomology of the finite Hopf subalgebra of the $\bmod 2$ Steenrod algebra generated by $\operatorname {Sq}\left ( {{2^i}} \right )$ with $i \leq n$, has ${h_0}$-torsion bound ${2^{n + 1}} - n - 2{\text { for }}n \geq 1$.References
- Donald M. Davis, An infinite family in the cohomology of the Steenrod algebra, J. Pure Appl. Algebra 21 (1981), no. 2, 145–150. MR 614377, DOI 10.1016/0022-4049(81)90003-7
- Donald M. Davis and Mark Mahowald, Ext over the subalgebra $A_{2}$ of the Steenrod algebra for stunted projective spaces, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 297–342. MR 686123, DOI 10.2307/2374058
- H. R. Margolis, Spectra and the Steenrod algebra, North-Holland Mathematical Library, vol. 29, North-Holland Publishing Co., Amsterdam, 1983. Modules over the Steenrod algebra and the stable homotopy category. MR 738973
- John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932
- Kenneth G. Monks, Nilpotence and torsion in the cohomology of the Steenrod algebra, Trans. Amer. Math. Soc. 333 (1992), no. 2, 903–912. MR 1068931, DOI 10.1090/S0002-9947-1992-1068931-X
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 5-9
- MSC: Primary 55S10; Secondary 16W30
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070527-6
- MathSciNet review: 1070527