Second order ergodic theorems for ergodic transformations of infinite measure spaces
HTML articles powered by AMS MathViewer
- by Jon Aaronson, Manfred Denker and Albert M. Fisher
- Proc. Amer. Math. Soc. 114 (1992), 115-127
- DOI: https://doi.org/10.1090/S0002-9939-1992-1099339-4
- PDF | Request permission
Abstract:
For certain pointwise dual ergodic transformations $T$ we prove almost sure convergence of the log-averages \[ \frac {1}{{\log N}}\sum \limits _{n = 1}^N {\frac {1}{{na\left ( n \right )}}\sum \limits _{k = 1}^n {f \circ {T^k}\left ( {f \in {L_1}} \right )} } \] and the Chung-Erdös averages \[ \frac {1}{{\log a\left ( N \right )}}\sum \limits _{k = 1}^N {\frac {1}{{a\left ( k \right )}}f \circ {T^k}} \left ( {f \in L_1^ + } \right )\] towards $\smallint f$, where $a\left ( n \right )$ denotes the return sequence of $T$.References
- Jon Aaronson, Ergodic theory for inner functions of the upper half plane, Ann. Inst. H. Poincaré Sect. B (N.S.) 14 (1978), no. 3, 233–253 (English, with French summary). MR 508928
- Jon Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. Analyse Math. 39 (1981), 203–234. MR 632462, DOI 10.1007/BF02803336
- Jon. Aaronson, Random $f$-expansions, Ann. Probab. 14 (1986), no. 3, 1037–1057. MR 841603 T. Bedford and A. M. Fisher, Analogues of the Lebesgue density theorem for fractal subsets of the reals and integers, Proc. London Math. Soc. (to appear).
- K. L. Chung and P. Erdös, Probability limit theorems assuming only the first moment. I, Mem. Amer. Math. Soc. 6 (1951), 19. MR 40612
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403 A. M. Fisher, A pathwise central limit theorem for random walks, Ann. Prob. (to appear). —, Integer Cantor sets and an order-two ergodic theorem, J. D’Analyse Math. (to appear).
- Gérard Letac, Which functions preserve Cauchy laws?, Proc. Amer. Math. Soc. 67 (1977), no. 2, 277–286. MR 584393, DOI 10.1090/S0002-9939-1977-0584393-8
- Maximilian Thaler, Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math. 46 (1983), no. 1-2, 67–96. MR 727023, DOI 10.1007/BF02760623
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 115-127
- MSC: Primary 28D05; Secondary 60F15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1099339-4
- MathSciNet review: 1099339