Asymptotic behaviour and oscillation of classes of integrodifferential equations
HTML articles powered by AMS MathViewer
- by A. H. Nasr
- Proc. Amer. Math. Soc. 116 (1992), 143-148
- DOI: https://doi.org/10.1090/S0002-9939-1992-1094505-6
- PDF | Request permission
Abstract:
Under some conditions on the integrodifferential equations \[ \ddot y\left ( t \right ) + \int _0^t {k\left ( {t - s} \right )y\left ( s \right )ds + \varphi \left ( t \right )} \int _0^t {K\left ( {t - s} \right )\dot y\left ( s \right )ds = f\left [ {t,y\left ( t \right ),\dot y\left ( t \right ),\int _0^t {g\left ( {t,s,y\left ( s \right ),\dot y\left ( s \right )} \right )ds} } \right ]} ,\quad t \geq 0,\], \[ \ddot y\left ( t \right ) + \int _1^t {k\left ( {\frac {t}{s}} \right )y\left ( s \right )} \frac {1}{s}ds + \varphi \left ( t \right )\int _1^t {K\left ( {\frac {t}{s}} \right )\dot y\left ( s \right )ds = f\left [ {t,y\left ( t \right ),\dot y\left ( t \right ),\int _1^t {g\left ( {t,s,y\left ( s \right ),\dot y\left ( s \right )} \right )ds} } \right ],\quad t \geq 1,} \], the explicit asymptote of solutions is proved to be $y\left ( t \right ) = A\sin \left ( {\omega t + \delta } \right )$ as $t \to \infty$. From this asymptote, the oscillatory behavior of the equations, the limit of the amplitudes, and the limit of the distance between consecutive zeros of the solutions are evident. Their definite values are also determined.References
- K. Gopalsamy, Oscillations in integro-differential equations of arbitrary order, J. Math. Anal. Appl. 126 (1987), no. 1, 100–109. MR 900531, DOI 10.1016/0022-247X(87)90078-3
- Athanassios G. Kartsatos, Recent results on oscillation of solutions of forced and perturbed nonlinear differential equations of even order, Stability of dynamical systems, theory and applications (Proc. Regional Conf., Mississippi State Univ., Mississippi State, Miss., 1975) Lecture Notes in Pure and Appl. Math., Vol. 28, Dekker, New York, 1977, pp. 17–72. MR 0594954
- G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Monographs and Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987. MR 1017244
- J. J. Levin, Boundedness and oscillation of some Volterra and delay equations, J. Differential Equations 5 (1969), 369–398. MR 236642, DOI 10.1016/0022-0396(69)90051-5
- A. D. Myshkis, Lineĭ nye differentsial′nye uravneniya s zapazdyvayushchim argumentom, 2nd ed., Izdat. “Nauka”, Moscow, 1972 (Russian). MR 0352648
- V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Mathematical Series, No. 22, Princeton University Press, Princeton, N.J., 1960. MR 0121520
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
- En Hao Yang, Asymptotic behaviour of certain second order integro-differential equations, J. Math. Anal. Appl. 106 (1985), no. 1, 132–139. MR 780324, DOI 10.1016/0022-247X(85)90136-2
- En Hao Yang, On asymptotic behaviour of certain integro-differential equations, Proc. Amer. Math. Soc. 90 (1984), no. 2, 271–276. MR 727248, DOI 10.1090/S0002-9939-1984-0727248-1
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 143-148
- MSC: Primary 34K15; Secondary 34K25, 45J05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1094505-6
- MathSciNet review: 1094505