Complete pure injectivity and endomorphism rings
HTML articles powered by AMS MathViewer
- by J. L. Gómez Pardo, Nguyen V. Dung and R. Wisbauer
- Proc. Amer. Math. Soc. 118 (1993), 1029-1034
- DOI: https://doi.org/10.1090/S0002-9939-1993-1137232-X
- PDF | Request permission
Abstract:
It is shown that if $M$ is a finitely presented completely pure injective object in a locally finitely generated Grothendieck category ${\mathbf {C}}$ such that $S = {\operatorname {End} _{\mathbf {C}}}M$ is von Neumann regular, then $S$ is semisimple. This is a generalized version of a well-known theorem of Osofsky, which includes also a result of Damiano on PCI-rings. As an application, we obtain a characterization of right hereditary rings with finitely presented injective hull.References
- Vasily C. Cateforis and Francis L. Sandomierski, On modules of singular submodule zero, Canadian J. Math. 23 (1971), 345–354. MR 286827, DOI 10.4153/CJM-1971-035-0
- R. R. Colby and E. A. Rutter Jr., Generalizations of $\textrm {QF}-3$ algebras, Trans. Amer. Math. Soc. 153 (1971), 371–386. MR 269686, DOI 10.1090/S0002-9947-1971-0269686-5
- Robert F. Damiano, A right PCI ring is right Noetherian, Proc. Amer. Math. Soc. 77 (1979), no. 1, 11–14. MR 539620, DOI 10.1090/S0002-9939-1979-0539620-1
- Dinh Van Huynh and Robert Wisbauer, A characterization of locally Artinian modules, J. Algebra 132 (1990), no. 2, 287–293. MR 1061481, DOI 10.1016/0021-8693(90)90131-7 —, Self-projective modules with $\pi$-injective factor modules, J. Algebra (to appear).
- Carl Faith, When are proper cyclics injective?, Pacific J. Math. 45 (1973), 97–112. MR 320069, DOI 10.2140/pjm.1973.45.97
- L. Gruson and C. U. Jensen, Dimensions cohomologiques reliées aux foncteurs $\underleftarrow {\mmlToken {mi}{lim}}^{(i)}$, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980) Lecture Notes in Math., vol. 867, Springer, Berlin, 1981, pp. 234–294 (French). MR 633523
- F. Kasch, Modules and rings, London Mathematical Society Monographs, vol. 17, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from the German and with a preface by D. A. R. Wallace. MR 667346
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Nguyen V. Dung, A note on hereditary rings or nonsingular rings with chain condition, Math. Scand. 66 (1990), no. 2, 301–306. MR 1075146, DOI 10.7146/math.scand.a-12313
- B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645–650. MR 161886, DOI 10.2140/pjm.1964.14.645
- B. L. Osofsky, Noninjective cyclic modules, Proc. Amer. Math. Soc. 19 (1968), 1383–1384. MR 231857, DOI 10.1090/S0002-9939-1968-0231857-7
- Barbara L. Osofsky, Projective dimension of “nice” directed unions, J. Pure Appl. Algebra 13 (1978), no. 2, 179–219. MR 507810, DOI 10.1016/0022-4049(78)90008-7
- Barbara L. Osofsky and Patrick F. Smith, Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991), no. 2, 342–354. MR 1113780, DOI 10.1016/0021-8693(91)90298-M
- Francis L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225–230. MR 219568, DOI 10.1090/S0002-9939-1968-0219568-5
- Daniel Simson, On pure semi-simple Grothendieck categories. I, Fund. Math. 100 (1978), no. 3, 211–222. MR 509547, DOI 10.4064/fm-100-3-211-222
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953, DOI 10.1007/978-3-642-66066-5
- Charles Vinsonhaler, Supplement to the paper: “Orders in $\textrm {QF}-3$ rings”, J. Algebra 17 (1971), 149–151. MR 268222, DOI 10.1016/0021-8693(71)90050-0
- Robert Wisbauer, Foundations of module and ring theory, Revised and translated from the 1988 German edition, Algebra, Logic and Applications, vol. 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991. A handbook for study and research. MR 1144522
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1029-1034
- MSC: Primary 16D50; Secondary 16D90, 16S50, 18E15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1137232-X
- MathSciNet review: 1137232