A representation lattice isomorphism for the peripherical spectrum
Author:
Josep Martínez
Journal:
Proc. Amer. Math. Soc. 119 (1993), 489-492
MSC:
Primary 47A35; Secondary 46B42, 47A10, 47B38, 47B65
DOI:
https://doi.org/10.1090/S0002-9939-1993-1158005-8
MathSciNet review:
1158005
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we construct a representation isometric lattice isomorphism for the peripherical spectrum of a positive operator on a Banach lattice. By a representation lattice homomorphism, we mean that the peripherical spectrum of the operator is identified with the spectrum of the induced isometric lattice homomorphism. A simple proof of a "zero-two" law follows easily from our representation technique.
- [A] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), no. 1, 63–79. MR 1008239, https://doi.org/10.4064/sm-94-1-63-79
- [Ar] Helmut H. Schaefer, Manfred Wolff, and Wolfgang Arendt, On lattice isomorphisms with positive real spectrum and groups of positive operators, Math. Z. 164 (1978), no. 2, 115–123. MR 517148, https://doi.org/10.1007/BF01174818
- [K] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. MR 859138, https://doi.org/10.1016/0022-1236(86)90101-1
- [L] Yu. I. Lyubich and Vũ Qu\cfac{o}c Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), no. 1, 37–42. MR 932004, https://doi.org/10.4064/sm-88-1-37-42
- [O] Donald Ornstein and Louis Sucheston, An operator theorem on 𝐿₁ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631–1639. MR 272057, https://doi.org/10.1214/aoms/1177696806
- [S1] Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR 0423039
- [S2] H. H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), no. 2, 241–244. MR 920086, https://doi.org/10.1007/BF02787265
- [W] Rainer Wittmann, Analogues of the “zero-two” law for positive linear contractions in 𝐿^{𝑝} and 𝐶(𝑋), Israel J. Math. 59 (1987), no. 1, 8–28. MR 923659, https://doi.org/10.1007/BF02779664
- [Zaa] A. C. Zaanen, Riesz spaces. II, North-Holland Mathematical Library, vol. 30, North-Holland Publishing Co., Amsterdam, 1983. MR 704021
- [Zah] Radu Zaharopol, The modulus of a regular linear operator and the “zero-two” law in 𝐿^{𝑝}-spaces (1<𝑝<+∞,𝑝̸=2), J. Funct. Anal. 68 (1986), no. 3, 300–312. MR 859137, https://doi.org/10.1016/0022-1236(86)90100-X
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A35, 46B42, 47A10, 47B38, 47B65
Retrieve articles in all journals with MSC: 47A35, 46B42, 47A10, 47B38, 47B65
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1158005-8
Article copyright:
© Copyright 1993
American Mathematical Society