Oscillation criteria for Hamiltonian matrix difference systems
Authors:
L. H. Erbe and Peng Xiang Yan
Journal:
Proc. Amer. Math. Soc. 119 (1993), 525-533
MSC:
Primary 39A10; Secondary 34C10
DOI:
https://doi.org/10.1090/S0002-9939-1993-1172949-2
MathSciNet review:
1172949
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We obtain some oscillation criteria for the Hamiltonian difference system



- [1] Calvin D. Ahlbrandt, Dominant and recessive solutions of symmetric three term recurrences, J. Differential Equations 107 (1994), no. 2, 238–258. MR 1264521, https://doi.org/10.1006/jdeq.1994.1011
- [2] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- [3] Lynn H. Erbe and Peng Xiang Yan, Weighted averaging techniques in oscillation theory for second order difference equations, Canad. Math. Bull. 35 (1992), no. 1, 61–69. MR 1157465, https://doi.org/10.4153/CMB-1992-009-9
- [4] Lynn H. Erbe and Peng Xiang Yan, Disconjugacy for linear Hamiltonian difference systems, J. Math. Anal. Appl. 167 (1992), no. 2, 355–367. MR 1168594, https://doi.org/10.1016/0022-247X(92)90212-V
- [5] Lynn H. Erbe and Peng Xiang Yan, Qualitative properties of Hamiltonian difference systems, J. Math. Anal. Appl. 171 (1992), no. 2, 334–345. MR 1194083, https://doi.org/10.1016/0022-247X(92)90347-G
- [6] Peter Lancaster and Miron Tismenetsky, The theory of matrices, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR 792300
- [7] Allan Peterson and Jerry Ridenhour, Oscillation of second order linear matrix difference equations, J. Differential Equations 89 (1991), no. 1, 69–88. MR 1088335, https://doi.org/10.1016/0022-0396(91)90111-L
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39A10, 34C10
Retrieve articles in all journals with MSC: 39A10, 34C10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1172949-2
Keywords:
Disconjugacy,
difference system,
Riccati system
Article copyright:
© Copyright 1993
American Mathematical Society