Combinatorial dimension of fractional Cartesian products
Authors:
Ron C. Blei and James H. Schmerl
Journal:
Proc. Amer. Math. Soc. 120 (1994), 73-77
MSC:
Primary 05D99; Secondary 43A46
DOI:
https://doi.org/10.1090/S0002-9939-1994-1160291-6
MathSciNet review:
1160291
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The combinatorial dimension of a fractional Cartesian product is the optimal value of an associated linear programming problem.
- [1] Ron C. Blei, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, v, 79–105 (English, with French summary). MR 539694
- [2] Ron Blei, Combinatorial dimension and certain norms in harmonic analysis, Amer. J. Math. 106 (1984), no. 4, 847–887. MR 749259, https://doi.org/10.2307/2374326
- [3] Ron C. Blei, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 57 (1985), no. 331, iv+69. MR 804208, https://doi.org/10.1090/memo/0331
- [4] Ron C. Blei, Stochastic integrators indexed by a multi-dimensional parameter, Probab. Theory Related Fields 95 (1993), no. 2, 141–153. MR 1214084, https://doi.org/10.1007/BF01192267
- [5] R. C. Blei and T. W. Körner, Combinatorial dimension and random sets, Israel J. Math. 47 (1984), no. 1, 65–74. MR 736064, https://doi.org/10.1007/BF02760562
- [6] Ron C. Blei and J.-P. Kahane, A computation of the Littlewood exponent of stochastic processes, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2, 367–370. MR 923689, https://doi.org/10.1017/S030500410006494X
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05D99, 43A46
Retrieve articles in all journals with MSC: 05D99, 43A46
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1160291-6
Article copyright:
© Copyright 1994
American Mathematical Society