On nonnegative cosine polynomials with nonnegative integral coefficients
Author:
Mihail N. Kolountzakis
Journal:
Proc. Amer. Math. Soc. 120 (1994), 157-163
MSC:
Primary 42A05; Secondary 42A32
DOI:
https://doi.org/10.1090/S0002-9939-1994-1169037-9
MathSciNet review:
1169037
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that there exist and
nonnegative integers, such that





- [1] Noga Alon and Joel H. Spencer, The probabilistic method, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1992. With an appendix by Paul Erdős; A Wiley-Interscience Publication. MR 1140703
- [2] József Beck, Flat polynomials on the unit circle—note on a problem of Littlewood, Bull. London Math. Soc. 23 (1991), no. 3, 269–277. MR 1123337, https://doi.org/10.1112/blms/23.3.269
- [3] J. Bourgain, Sur le minimum d’une somme de cosinus, Acta Arith. 45 (1986), no. 4, 381–389 (French). MR 847298, https://doi.org/10.4064/aa-45-4-381-389
- [4] P. Erdős and G. Szekeres, On the product Πⁿ_{𝑘=1}(1-𝑧^{𝑎}𝑘), Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 29–34. MR 126425
- [5] Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- [6] L. Lovász, J. Spencer, and K. Vesztergombi, Discrepancy of set-systems and matrices, European J. Combin. 7 (1986), no. 2, 151–160. MR 856328, https://doi.org/10.1016/S0195-6698(86)80041-5
- [7] A. M. Odlyzko, Minima of cosine sums and maxima of polynomials on the unit circle, J. London Math. Soc. (2) 26 (1982), no. 3, 412–420. MR 684554, https://doi.org/10.1112/jlms/s2-26.3.412
- [8] K. F. Roth, On cosine polynomials corresponding to sets of integers, Acta Arith. 24 (1973), 87–98. MR 342475, https://doi.org/10.4064/aa-24-1-87-98
- [9] R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954), 245–301. MR 65679, https://doi.org/10.1007/BF02393433
- [10] Joel Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), no. 2, 679–706. MR 784009, https://doi.org/10.1090/S0002-9947-1985-0784009-0
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A05, 42A32
Retrieve articles in all journals with MSC: 42A05, 42A32
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1169037-9
Article copyright:
© Copyright 1994
American Mathematical Society