Determinant type generalizations of Heinz-Kato theorem via Furuta inequality
Author:
Takayuki Furuta
Journal:
Proc. Amer. Math. Soc. 120 (1994), 223-231
MSC:
Primary 47A63; Secondary 47A30, 47B15
DOI:
https://doi.org/10.1090/S0002-9939-1994-1176068-1
MathSciNet review:
1176068
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A capital letter means a bounded linear operator on a complex Hilbert space . By a nice application of the Furuta inequality, we give two kinds of determinant type generalizations (Theorems 1 and 2 in
) of the famous and well-known Heinz-Kato theorem containing the terms
, and
.
- [1] Masatoshi Fujii, Furuta’s inequality and its mean theoretic approach, J. Operator Theory 23 (1990), no. 1, 67–72. MR 1054816
- [2] Takayuki Furuta, 𝐴≥𝐵≥0 assures (𝐵^{𝑟}𝐴^{𝑝}𝐵^{𝑟})^{1/𝑞}≥𝐵^{(𝑝+2𝑟)/𝑞} for 𝑟≥0, 𝑝≥0, 𝑞≥1 with (1+2𝑟)𝑞≥𝑝+2𝑟, Proc. Amer. Math. Soc. 101 (1987), no. 1, 85–88. MR 897075, https://doi.org/10.1090/S0002-9939-1987-0897075-6
- [3] Takayuki Furuta, A proof via operator means of an order preserving inequality, Linear Algebra Appl. 113 (1989), 129–130. MR 978587, https://doi.org/10.1016/0024-3795(89)90291-7
- [4] Takayuki Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 126. MR 1011850
- [5] Erhard Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415–438 (German). MR 44747, https://doi.org/10.1007/BF02054965
- [6] Eizaburo Kamei, A satellite to Furuta’s inequality, Math. Japon. 33 (1988), no. 6, 883–886. MR 975867
- [7] Tosio Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208–212. MR 53390, https://doi.org/10.1007/BF01343117
- [8] Karl Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177–216 (German). MR 1545446, https://doi.org/10.1007/BF01170633
- [9] Gert K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc. 36 (1972), 309–310. MR 306957, https://doi.org/10.1090/S0002-9939-1972-0306957-4
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A63, 47A30, 47B15
Retrieve articles in all journals with MSC: 47A63, 47A30, 47B15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1176068-1
Keywords:
Positive operator,
operator inequality,
the Furuta inequality
Article copyright:
© Copyright 1994
American Mathematical Society